Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T14:15:18.488Z Has data issue: false hasContentIssue false

Early to Mid-Holocene Aridity in Central Chile and the Southern Westerlies: The Laguna Aculeo Record (34°S)

Published online by Cambridge University Press:  20 January 2017

Bettina Jenny*
Affiliation:
Department of Physical Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
Blas L. Valero-Garcés
Affiliation:
Pyrenean Institute of Ecology, Spanish Scientific Research Council, Apdo 202, Zaragoza, 50080, Spain
Rodrigo Villa-Martínez
Affiliation:
Laboratory of Palinology, Department of Biology, Universidad de Chile, Casilla 653, Santiago, Chile
Roberto Urrutia
Affiliation:
Centro EULA-Chile, University of Concepción, Casilla 160-C, Concepción, Chile
Mebus Geyh
Affiliation:
Institute for Joint Geoscientific Research, Stilleweg 2, Hanover, 30655, Germany
Heinz Veit
Affiliation:
Department of Physical Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
*
1To whom correspondence should be addressed. Fax: 41 (0)31 631 85 11. E-mail: [email protected].

Abstract

Central Chile (32–35°S) lies at the northern border of strong Westerly influence and thus exhibits a steep precipitation gradient. Therefore, the palaeoclimatic archives in the region are suitable for detecting past moisture changes. The study of Laguna Aculeo (33°50'S, 70°54'W) presents a multiproxy Holocene lake record including sedimentology, geochemistry, mineralogy, pollen, diatoms, and radiocarbon dating (17 dates). Results indicate an arid early to mid-Holocene period (about 9500–5700 cal yr B.P.). After 5700 cal yr B.P. effective moisture increased progressively and around 3200 cal yr B.P., modern humid conditions were established. Numerous intercalated clastic layers reflect flood deposition during rainy winters. A fluvial unit was deposited shortly before 9000 cal yr B.P. Subsequently, flood events were absent until 5700 but have become frequent since 3200 cal yr B.P. The frequency of flood layers possibly points to weak or no El Niño activity during the early and mid-Holocene, with a subsequent increase during the late Holocene. During the early and mid-Holocene, the Westerlies were probably blocked and hence deflected southward by the subtropical high-pressure cell. Higher precipitation during the last 3200 yr seems strongly related to a weakened subtropical high-pressure cell with intensified Westerlies and possibly increased El Niño activity.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceituno, P. On the functioning of the Southern Oscillation in the South American sector. Part 1. Surface climate. Monthly Weather Review 116, (1988). 505 524.2.0.CO;2>CrossRefGoogle Scholar
Berger, A., and Loutre, M.F. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, (1991). 297 317.CrossRefGoogle Scholar
Betancourt, J.L., Latorre, C., Rech, J.A., Quade, J., and Rylander, K.A. A 22,000-year record of monsoonal precipitation from Northern Chile's Atacama desert. Science 289, (2000). 1542 1546.CrossRefGoogle ScholarPubMed
Cabrera, S., and Montecino, V. Eutrophy of Lake Aculeo, Chile. Plant and Soil 67, (1982). 377 387.CrossRefGoogle Scholar
Clement, A.C., Seager, R., and Cane, M.A. Suppression of El Niño during the mid-Holocene by changes in the Earth's orbit. Palaeoceanography 15, (2000). 731 737.CrossRefGoogle Scholar
Corvalán, J, and Munizaga, F. (1972). Edades radiometricas de rocas intrusivas y metamorficas de la Hoja Valparaı́so—San Antonio, Chile. Instituto de Investigaciones Geologicas, . [In Spanish] Google Scholar
Cross, S.L., Baker, P.A., Seltzer, G.O., Fritz, S.C., and Dunbar, R.B. A new estimate of the Holocene lowstand level of Lake Titicaca, central Andes, and implications for tropical palaeohydrology. The Holocene 10, (2000). 21 32.CrossRefGoogle Scholar
deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M. Abrupt onset and termination of the African Humid period: Rapid climate responses to gradual insolation forcing. Quaternary Science Reviews 19, (2000). 347 361.CrossRefGoogle Scholar
deVries, T.J., Ortlieb, L., Diaz, A., Wells, L., Hillaire, M., Wells, L.E., Jay, S., Sandweiss, D.H., Richardson, J.B. III, Reitz, E.J., Rollins, H.B., and Maasch, K.A. Determining the early history of El Niño. Science 276, (1997). 965 967.CrossRefGoogle Scholar
Faegri, K., and Iversen, J. Textbook of Pollen Analysis. (1989). Amsterdam, Balkena.Google Scholar
Fontugne, M., Usselmann, P., Lavallée, D., Julien, M., and Hatté, C.1999. El Niño variability in the coastal desert of Southern Peru during the mid-Holocene. Quaternary Research52, 171–179,Google Scholar
Grosjean, M. Mid-Holocene climate in the South-Central Andes: Humid or dry?. Science 292, (2001). 2391 CrossRefGoogle ScholarPubMed
Grosjean, M., Geyh, M.A., Messerli, B., Schreier, H., and Veit, H. A late-Holocene (<2600 B.P.) glacial advance in the south-central Andes (29°), northern Chile. The Holocene 8, (1998). 473 479.CrossRefGoogle Scholar
Hasle, G., and Fryxell, G. Diatoms: Cleaning and mounting for light and electron microscopy. Transactions of American Microscopy Society 89, (1970). 469 474.CrossRefGoogle Scholar
Heusser, C.J. Quaternary pollen record from Laguna de Tagua Tagua, Chile. Science 219, (1983). 1429 1432.CrossRefGoogle Scholar
Heusser, C.J. Ice age vegetation and climate of subtropical Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 80, (1990). 107 127.CrossRefGoogle Scholar
Jenny, B., Valero-Garcés, B.L., Urrutia, R., Kelts, K., Veit, H., and Geyh, M. Moisture changes and fluctuations of the Westerlies in Mediterranean Central Chile during the last 2000 years: The Laguna Aculeo record (33°50'S). Quaternary International 87, (2002). 3 18.CrossRefGoogle Scholar
Keefer, D.K., deFrance, S.D., Moseley, M.E., Richardson, J.B. III, Satterlee, D.R., and Day-Lewis, A. Early maritime economy and El Niño events at Quebrada Tacahuay, Peru. Science 281, (1998). 1833 1835.CrossRefGoogle ScholarPubMed
Kutzbach, J.E., and Street-Perrott, F.A. Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr B.P. Nature 317, (1985). 130 134.CrossRefGoogle Scholar
Lamy, F., Hebbeln, D., and Wefer, G. High-resolution marine record of climatic change in mid-latitude Chile during the last 28,000 years based on terrigenous sediment parameters. Quaternary Research 51, (1999). 83 93.CrossRefGoogle Scholar
Lamy, F., Hebbeln, D., Roehl, U., and Wefer, G. (2001). Holocene rainfall variability in southern Chile: A marine record of latitudinal shifts of the Southern Westerlies. Earth and Planetary Science Letters 185, 369382.,CrossRefGoogle Scholar
Markgraf, V. Palaeoclimates in central and south America since 18,000 B.P. based on pollen and lake-level records. Quaternary Science Reviews 8, (1989). 1 24.CrossRefGoogle Scholar
Markgraf, V. Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeography, Palaeoclimatology, Palaeoecology 102, (1993). 53 68.CrossRefGoogle Scholar
Markgraf, V. (1998). Past climates of South America.. In Climates of the Southern Continents: Present, Past and Future Hobbs, J. E., Lindesay, J. A., and Bridgman, H. A., Eds., pp. 249264. Wiley, Chichester, UK.Google Scholar
McGlone, M.S., Kershaw, A.P., and Margraf, V. El Niño/Southern Oscillation climatic variability in Australasian and South American paleoenvironmental records. Diaz, H., and Markgraf, V. El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation. (1992). Cambridge Univ. Press, Cambridge. 435 462.Google Scholar
Montecinos, A, and Aceituno, P. 1997, Rainfall prediction for the austral winter in Central Chile based on a CCA forecast and a Niño 3 analog evolution approach, Experimental Long-Lead Forecast Bulletins, June 1997.Google Scholar
Montecinos, A., Dı&#x0301;az, A., and Aceituno, P. Seasonal diagnostic and predictability of rainfall in subtropical South America based on tropical Pacific SST. Journal of Climate 13, (2000). 746 758.2.0.CO;2>CrossRefGoogle Scholar
Mortlock, R.A., and Froelich, P.N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Research 36, (1989). 1415 1426.CrossRefGoogle Scholar
Perrier, C., Hillaire-Marcel, C., and Ortlieb, L. Littoral paleogeography and isotopic record 13C, 18O of El Niño events in modern and holocene mollusk shells from NW Peru. Geographie Physique et Quaternaire 48, (1994). 23 38.CrossRefGoogle Scholar
Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abbott, M.B., Enfield, D.B., and Newman, J.H. A ∼15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science 283, (1999). 516 520.CrossRefGoogle ScholarPubMed
Rutllant, J., and Fuenzalida, H. Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation. International Journal of Climatology 11, (1991). 63 76.CrossRefGoogle Scholar
Sandweiss, D.H., Richardson, J.B. III, Reitz, E.J., Rollins, H.B., and Maasch, K.A. Geoarchaeological evidence from Peru for a 5000 years B.P. onset of El Niño. Science 273, (1996). 1531 1533.CrossRefGoogle Scholar
Sandweiss, D.H., Maasch, K.A., and Anderson, D.G. Transitions in the mid-Holocene. Science 283, (1999). 499 500.CrossRefGoogle Scholar
Seltzer, G.O., Baker, P., Cross, S., Dunbar, R., and Fritz, S. High-resolution seismic reflection profiles from Lake Titicaca, Peru-Bolivia: Evidence for Holocene aridity in the tropical Andes. Geology 26, (1998). 167 170.2.3.CO;2>CrossRefGoogle Scholar
Shulmeister, J. Australasian evidence for mid-holocene climate change implies precessional control of Walker Circulation in the Pacific. Quaternary International 57/58, (1999). 81 91.CrossRefGoogle Scholar
Steig, E.J. Mid-Holocene climate change. Science 286, (1999). 1485 1487.CrossRefGoogle Scholar
Stuiver, M., and Reimer, P.J. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215 230.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., van der Plicht, J., and Spurk, M. INTCAL98 Radiocarbon age calibration 24,000-0 cal B.P. Radiocarbon 40, (1998). 1041 1083.CrossRefGoogle Scholar
Valero-Garcés, B.L., Grosjean, M., Schwalb, A., Geyh, M., Messerli, B., and Kelts, K. Limnogeology of Laguna Miscanti: Evidence for mid to late Holocene moisture changes in the Atacama Altiplano (northern Chile). Journal of Paleolimnology 16, (1996). 1 21.CrossRefGoogle Scholar
Valero-Garcés, B.L., González-Sampériz, P., Delgado-Huertas, A., Navas, A., Machı&#x0301;n, J., and Kelts, K. Lateglacial and Late Holocene environmental and vegetational change in Salada Mediana, central Ebro Basin, Spain. Quaternary International 73–74, (2000). 29 46.CrossRefGoogle Scholar
van Geel, B., Heusser, C.J., Renssen, H., and Schuurmans, C.J.E. Climatic change in Chile at around 2700 B.P. and global evidence for solar forcing: A hypothesis. The Holocene 10, (2000). 659 664.CrossRefGoogle Scholar
Veit, H. Southern Westerlies during the Holocene deduced from geomorphological and pedological studies in the Norte Chico, Northern Chile (27–33°C). Palaeogeography, Palaeclimatology, Palaeoecology 123, (1996). 107 119.CrossRefGoogle Scholar
Villa-Martı&#x0301;nez, R., and Villagrán, C. Historia de la vegetación de bosques pantanosos de la costa de Chile central durante el Holoceno medio y tardı&#x0301;o. Revista Chilena de Historia Natural 70, (1997). 391 401.Google Scholar
Villagrán, C., and Varela, J. Palynological evidence for increased aridity on the Central Chilean coast during the Holocene. Quaternary Research 34, (1990). 198 207.CrossRefGoogle Scholar
Wirrmann, D., and Mourguiart, P. (1995). Late quaternary spatio-temporal limnological variation in the Altiplano of Bolivia and Peru. Quaternary Research 43, 344354.Google Scholar