Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T17:04:25.197Z Has data issue: false hasContentIssue false

Early Pleistocene climate changes in the central Mediterranean region as inferred from integrated pollen and planktonic foraminiferal stable isotope analyses

Published online by Cambridge University Press:  20 January 2017

Sébastien Joannin*
Affiliation:
Université de Lyon; Université Lyon 1; CNRS, UMR 5125, Paléoenvironnements et Paléobiosphère, Villeurbanne,F-69622, France
Frédéric Quillévéré
Affiliation:
Université de Lyon; Université Lyon 1; CNRS, UMR 5125, Paléoenvironnements et Paléobiosphère, Villeurbanne,F-69622, France
Jean-Pierre Suc
Affiliation:
Université de Lyon; Université Lyon 1; CNRS, UMR 5125, Paléoenvironnements et Paléobiosphère, Villeurbanne,F-69622, France
Christophe Lécuyer
Affiliation:
Université de Lyon; Université Lyon 1; CNRS, UMR 5125, Paléoenvironnements et Paléobiosphère, Villeurbanne,F-69622, France Institut Universitaire de France, 103 bld Saint-Michel, 75005 Paris, France
François Martineau
Affiliation:
Université de Lyon; Université Lyon 1; CNRS, UMR 5125, Paléoenvironnements et Paléobiosphère, Villeurbanne,F-69622, France
*
Corresponding author. Université de Lyon, Lyon, F-69003, France. Fax: +33 472 44 83 82. E-mail address:[email protected] (S. Joannin).

Abstract

Vegetation inherited from a Pliocene subtropical climate evolved through obliquity oscillations and global cooling leading to modern conditions. An integrated, highly time-resolved record of pollen and stable isotopes (δ18O and δ13C of Globigerina bulloides) was obtained to understand vegetation responses to Early Pleistocene climate changes. Continental and marine responses are compared in the Central Mediterranean region with a particular consideration of environmental changes during anoxic events.

Pollen data illustrate vegetation dynamics as follows: [1] development of mesothermic elements (warm and humid conditions); [2] expansion of mid- and high-altitude elements (cooler but still humid conditions); and [3] strengthening of steppe and herb elements (cooler and dry conditions). These successions correlate with precession. δ18O variations recorded by Globigerina bulloides define two cycles (MIS 43-40) related to obliquity. At northern low- to mid-latitudes, the pollen signal records temperature and wetness changes related to precession even during global climate changes induced by obliquity. This may result in unexpected increasing wetness during glacial periods, which has to be considered specific to the Central and Eastern Mediterranean region. Lastly, an analysis of anoxic events reveals that enhanced runoff is indicated by increasing frequency of the riparian trees Liquidambar and Zelkova.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alan, M., and Kaya, Z. EUROFORGEN Technical Guidelines for Genetic Conservation and Use for Oriental Sweet Gum (Liquidambar orientalis). (2003). International Plant Genetic Resources Institute, Rome, Italy. 6 Google Scholar
Ashkenazy, Y., and Tziperman, E. Are the 41 kyr glacial oscillations a linear response to Milankovitch forcing?. Quaternary Science Reviews 23, (2004). 18791890.Google Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth, C.J. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67, 17 (2003). 31813199.Google Scholar
, A.W.A. Ramsey, A.T.S. On Ecological, Zoographic and Taxonomic Review of Recent Planktonic Foraminifera. (1977). Academic, San Diego. 1100.Google Scholar
Beaudouin, C., Suc, J.-P., Escarguel, G., Arnaud, M., Charmasson, S., in press. The significance of pollen record from marine terrigenous sediments: the present-day example of the Gulf of Lions (Northwestern Mediterranean Sea). Geobios, .Google Scholar
Berger, A., and Loutre, M.F. Théorie astronomique des paléoclimats. Comptes Rendus. Geoscience 336, (2004). 701709.Google Scholar
Capraro, L., Asioli, A., Backman, J., Bertoldi, R., Channell, J.E.T., Massari, F., and Rio, D. Climatic patterns revealed by pollen and oxygen isotope records across the Brunhes-Matuyama Boundary in the Central Mediterranean (Southern Italy). Head, M.J., and Gibbard, P.L. Early-Middle Pleistocene Transitions: The Land-Ocean Evidence. Special Publication-Geological Society of London vol. 247, (2005). 159182.Google Scholar
Caratini, C., Bellet, J., and Tissot, C. Les palynofaciès: représentation graphique, intérêt de leur étude pour les reconstitutions paléogéographiques. Géochimie organique des sédiments marins d'Orgon à Misedor. (1983). C.N.R.S., Paris. 327351.Google Scholar
Ciaranfi, N., Guida, M., Iaccarino, G., Pescatore, T., Pieri, P., Rapisardi, L., Richetti, G., Sgrosso, I., Torre, M., Tortorici, L., Turco, E., Scarpa, R.Di., Cuscito, M., Guerra, I., Iannaccone, G., Panza, G.F., and Scandone, P. Elementi sismotettonici dell’Apennino meridionale. Bollettino della Societa Geologica Italiana, Rome 102, (1983). 201222.Google Scholar
Combaz, A. Les vestiges organiques de la biosphere. Palynosciences 1, (1991). 118.Google Scholar
Combourieu-Nebout, N., (1987). Les premiers cycles glaciaire–interglaciaire en région méditerranéenne d’après l’analyse palynologique de la série plio-pléistocène de Crotone (Italie méridionale). PhD thesis. Université Montpellier 2, p. 158.Google Scholar
Combourieu-Nebout, N. Les cycles glaciaire–interglaciaire en région méditerranéenne de 2,4 à 1,1 Ma: analyse pollinique de la série de Crotone (Italie méridionale). Paléobiologie Continentale 17, (1990). 3559.Google Scholar
Combourieu-Nebout, N. Vegetation response to Upper Pliocene glacial/interglacial cyclicity in the Central Mediterranean. Quaternary Research 40, (1993). 228236.Google Scholar
Combourieu-Nebout, N., and Vergnaud Grazzini, C. Late Pliocene northern hemisphere glaciations: the continental and marine responses in the central Mediterranean. Quaternary Science Reviews 10, (1991). 319334.Google Scholar
Cour, P. Nouvelles techniques de détection des flux et de retombées polliniques: étude de la sédimentation des pollens et des spores à la surface du sol. Pollen et Spores 16, 1 (1974). 103141.Google Scholar
Ganssen, G.M., and Kroon, D. The isotopic signature of planktonic foraminifera from NE Atlantic surface sediments: implications for the reconstruction of past oceanic conditions. Journal of the Geological Society (London) 157, (2000). 693699.Google Scholar
Hays, J.D., Imbrie, J., and Shackleton, N.J. Variations in the Earth's orbit: pacemaker of the ice ages. Science 194, (1976). 11211132.CrossRefGoogle ScholarPubMed
Hemleben, C., Sprindler, M., and Anderson, O.R. Modern Planktonic Foraminifera. (1989). Springer Verlag, New York. 335 Google Scholar
Heusser, L.E., and Balsam, W.L. Pollen distribution in the Northeast Pacific Ocean. Quaternary Research 7, (1977). 4562.Google Scholar
Hilgen, F.J. Sedimentary cycles and an astronomically controlled, oscillatory system of climatic change during the Late Cenozoic in the Mediterranean. Paleobiologie Continentale 17, (1990). 2533.Google Scholar
Hilgen, F.J. Astronomical calibration of Guauss to Matuyama sapropels in the Mediterranean and implication for the geomagnetic polarity timescale. Earth and Planetary Science Letters 104, (1991). 226244.Google Scholar
Horowitz, A. Continuous pollen diagrams for the last 3.5 MY. From Israel: vegetation, climate and correlation with the oxygen isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology 72, (1989). 6378.Google Scholar
Imbrie, J., Berger, A., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G., Kutzbach, J., Martinson, D.G., McIntyre, A., Mix, A.C., Molfino, B., Morley, J.J., Peterson, L.C., Pisias, N.G., Prell, W.L., Raymo, M.E., Shackleton, N.J., and Toggweiler, J.R. On the structure and origin of major glaciation cycles, 2: the 100,000-year cycle. Paleoceanography 8, (1993). 699736.Google Scholar
Kroon, D., Alexander, I., Little, M., Lourens, L.J., Matthewson, A.H.F., and Sakamoto, T. Oxygen isotope and sapropel stratigraphy in the Eastern Mediterranean during the last 3.2 million years. Roberton, A.H.F., Emeis, K.-C., Ritcher, C. et al. Proceedings of ODP Scientific Results vol. 160, (1998). 181189.Google Scholar
Laskar, J., Joutel, F., and Boudin, F. Orbital, precessional, and insolation quantities for the Earth from − 20 Myr to + 10 Myr. Astronomy and Astrophysics 270, (1993). 522533.Google Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., and Levrard, B. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428, (2004). 261285.Google Scholar
Lourens, L.J., (1994). Astronomical forcing of Mediterranean climate during the last 5.3 million years. PhD thesis, University of Utrecht, Netherlands., p. 247.Google Scholar
Lourens, L.J., Antonarakou, A., Hilgen, F.J., van Hoof, A.R.M., Vergnaud-Grazzini, C., and Zachariasse, W.J. Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography 11, (1996). 391413.Google Scholar
Lourens, L.J., Hilgen, F.J., Raffi, I., and Vergnaud-Grazzini, C. Early Pleistocene chronology of the Vrica section (Calabria, Italy). Paleoceanography 11, (1996). 797812.Google Scholar
Lourens, L.J., Hilgen, F.J., and Raffi, I. Base of large Gephyrocapsa and astronomical calibration of early Pleistocene sapropels in Site 967 and Hole 969D: solving the chronology of the Vrica section (Calabria, Italy). Proceedings of the Ocean Drilling Program: Scientific Results 160, (1998). 191197.Google Scholar
Maslin, M.A., and Ridgwell, A.J. Mid-Pleistocene revolution and the ‘eccentricity myth’. Head, M.J., and Gibbard, P.L. Early-Middle Pleistocene Transitions: The Land-Ocean Evidence. Special Publication-Geological Society of London vol. 247, (2005). 1934.Google Scholar
Milankovitch, M., (1941). Canon of insolation and the ice-age problem. Royal Serbian Academy, Special Publication No. 132, translated from German by Israel Program for Scientific Translations, Jerusalem., (1969).Google Scholar
Mommersteeg, H.J.P.M., Loutre, M.F., Young, R., Wijmstra, T.A., and Hooghiemstra, H. Orbital forced frequencies in the 975,000 year pollen record from Tenagi Philippon (Greece). Climate Dynamics 11, (1995). 424.CrossRefGoogle Scholar
Mudelsee, M., and Stattegger, K. Exploring the structure of the mid-Pleistocene revolution with advance methods of time-series analysis. Geologische Rundschau 86, (1997). 499511.Google Scholar
Nikolaev, S.D., Oskina, N.S., Blyum, N.S., and Bubenshchikova, N.V. Neogene-Quaternary variations of the “Pole-Equator” temperature gradient of the surface oceanic waters in the North Atlantic and North Pacific. Global and Planetary Change 18, (1998). 85111.Google Scholar
Okuda, M., Van Vugt, N., Nakagawa, T., Ikeya, M., Hayashida, A., Yasuda, Y., and Setoguchi, T. Palynological evidence for the astronomical origin of lignite-detritus sequence in the Middle Pleistocene Marathousa Member, Megalopolis, SW Greece. Earth and Planetary Science Letters 201, (2002). 143157.CrossRefGoogle Scholar
Ozenda, P. Sur les étages de végétation dans les montagnes du bassin méditerranéen. Documents de Cartographie Écologique 16, (1975). 132.Google Scholar
Pisias, N.G., and Moore, T.C. The evolution of Pleistocene climate: a time series approach. Earth and Planetary Science Letters 52, (1981). 450458.Google Scholar
Poumot, C., and Suc, J.-P. Palynofaciès et dépôts séquentiels dans des sédiments néogènes. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, Special Publications 18, (1994). 107119.Google Scholar
Prell, W.L., and Kutzbach, J.E. Monsoon variability over the past 150,000 years. Journal of Geophysical Research 92, (1987). 84118425.CrossRefGoogle Scholar
Pujol, C., and Vergnaud Grazzini, C. Distribution patterns of live planktonic foraminifers as related to regional hydrography and productive systems of the Mediterranean Sea. Marine Micropaleontology 25, (1995). 187217.Google Scholar
Quézel, P., and Médail, F. Ecologie et biogéographie des forets du basin méditerranéen. (2003). Elsevier, Paris. 570 Google Scholar
Ravazzi, C., and Rossignol-Strick, M. Vegetation change in a climatic cycle of early Pleistocene age in the Leffe Basin (Northern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 117, (1995). 105122.CrossRefGoogle Scholar
Rohling, E.J., and Hilgen, F.J. The eastern Mediterranean climate at times of sapropel formation: a review. Geologie & Mijnbouw 70, (1991). 253264.Google Scholar
Rohling, E.J., Cane, T.R., Cooke, S., Sprovieri, M., Bouloubassi, I., Emeis, K.C., Schiebel, R., Kroon, D., Jorissen, F.J., Lorre, A., and Kemp, A.E.S. African monsoon variability during the previous interglacial maximum. Earth and Planetary Science Letters 202, (2002). 6175.Google Scholar
Rohling, E.J., Sprovieri, M., Cane, T., Casford, J.S.L., Cooke, S., Bouloubassi, L., Emeis, K.C., Schiebel, R., Rogerson, M.A., Hayes, A., Jorissen, F.J., and Kroon, D. Reconstructing past planktic foraminiferal habitats using stable isotope data: a case history for Mediterranean sapropel S5. Marine Micropaleontology 50, (2004). 89123.CrossRefGoogle Scholar
Rossignol-Strick, M., and Paterne, M. A synthetic pollen record of the eastern Mediterranean sapropels of the last 1 Ma: implications for the time-scale and formation of sapropels. Marine Geology 153, (1999). 221237.CrossRefGoogle Scholar
Ruddiman, W.F. Orbital forcing ice volume and greenhouse gases. Quaternary Science Reviews 22, (2003). 15971629.Google Scholar
Ruddiman, W.F., Raymo, M.E., Martinson, D.G., Clement, B.M., and Backman, J. Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography 4, (1989). 353412.Google Scholar
Schenau, S.J., Antonarakou, A., Hilgen, F.J., Lourens, L.J., Nijenhuis, I.A., Van der Weijden, C.H., and Zachariasse, W. Organic-rich layers in the Metochia section (Gavdos, Greece): evidence for a single mechanism of sapropel formation during the past 10 My. Marine Geology 153, (1999). 117135.Google Scholar
Shackleton, N.J., Crowhurst, S., Weedon, G., and Laskar, J. Astronomical calibration of oligocene-miocene time. Proceedings of the Royal Society of London, A 357, (1999). 19071929.Google Scholar
Shvetsov, M.S. Concernant quelques aides additionnelles pour l’étude des formations sédimentaires (in Russian). Bulletin Moscow Society Naturalists, Geological Series 29, 1 (1954). 6166.Google Scholar
Sittler, C., and Schuler, M. Une méthode d’analyse quantitative absolue de la fraction organique constituant le palynofaciès d’une roche sédimentaire. Palynosciences 1, (1991). 5968.Google Scholar
Sprovieri, R., Di Stefano, E., Howell, M., Sakamoto, T., Di Stefano, A., and Marino, M. Integrated calcareous plankton biostratigraphy and cyclostratigraphy at Site 964. Proceedings of the Ocean Drilling Program: Scientific Results 160, (1998). 155165.Google Scholar
Subally, D., and Quézel, P. Glacial or interglacial: artemisia, a plant indicator with dual responses. Review of Palaeobotany and Palynology 120, (2002). 123130.Google Scholar
Subally, D., Bilodeau, G., Tamrat, E., Ferry, S., Debard, E., and Hillaire-Marcel, C. Cyclic climatic records during the Olduvai Subchron (Uppermost Pliocene) on Zakynthos Island (Ionian Sea). Geobios 32, 6 (1999). 793803.CrossRefGoogle Scholar
Suc, J.-P. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307, 5950 (1984). 429432.Google Scholar
Suc, J.-P., and Popescu, S.-M. Pollen records and climatic cycles in the North Mediterranean region since 2.7 Ma. Head, M.J., and Gibbard, P.L. Early–Middle Pleistocene Transitions: The Land–Ocean Evidence. Special Publication-Geological Society of London vol. 247, (2005). 147157.CrossRefGoogle Scholar
Suc, J.-P., and Zagwijn, W.H. Plio-Pleistocene correlations between the northwestern Mediterranean region and northwestern Europe according to recent biostratigraphic and paleoclimatic data. Boreas 12, (1983). 153166.Google Scholar
Suc, J.-P., Combourieu-Nebout, N., Robert, C., Poumot, C., Turon, J.-L., and Irr, F. Changements dans la sédimentation argileuse au Néogène supérieur en Méditerranée centrale: les Tripoli messiniens de Capodarso (Sicile) et les laminites plio-pléistocènes de Crotone (Calabre). Palynosciences 1, (1991). 89111.Google Scholar
Suc, J.-P., Violanti, D., Londeix, L., Poumot, C., Robert, C., Clauzon, G., Turon, J.-L., Ferrier, J., Chikhi, H., Cambon, G., and Gautier, F. Evolution of the Messinian Mediterranean environments: the Tripoli Formation at Capodarso (Sicily, Italy). Review of Palaeobotany and Palynology 87, (1995). 5179.Google Scholar
Tzedakis, P.C. Long-term tree populations in northwest Greece through multiple Quaternary climatic cycles. Nature 364, (1993). 437440.Google Scholar
Tzedakis, P.C., and Bennett, K.D. Interglacial vegetation succession: a view from southern Europe. Quaternary Science Reviews 14, (1995). 967982.Google Scholar
Tzedakis, P.C., Andrieu, V., de Beaulieu, J.-L., Crowhurst, S., Follieri, M., Hooghiemstra, H., Magri, D., Reille, M., Sadori, L., Shackleton, N.J., and Wijmstra, T.A. Comparison of terrestrial and marine records of changing climate of the last 500,000 years. Earth and Planetary Science Letters 150, (1997). 171176.CrossRefGoogle Scholar
Tzedakis, P.C., McManus, J.F., Hooghiemstra, H., Oppo, D.W., and Wijmstra, T.A. Comparison of changes in vegetation in northeast Greece with records of climate variability on orbital and suborbital frequencies over the last 450,000 years. Earth and Planetary Science Letters 212, (2003). 197212.Google Scholar
Vergnaud Grazzini, C., Saliège, J.F., Urrutiaguer, M.J., and Iannace, A. Oxygen and carbon isotope stratigraphy of ODP Hole 953A and Site 654: the Pliocene–Pleistocene glacial history recorded in the Tyrrhenian basin (west Mediterranean). Proceedings of the Ocean Drilling Program: Scientific Results 107, (1990). 361386.Google Scholar
Von Grafenstein, R., Zahn, R., Tiedemann, R., and Murat, A. Planktonic δ 18O records at sites 976 and 977, Alboran Sea: stratigraphy, forcing, and paleoceanographic implications. Proceedings of the Ocean Drilling Program: Scientific Results 161, (1999). 469479.Google Scholar