Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-04-25T18:40:00.368Z Has data issue: false hasContentIssue false

Do ice-dam rupture events leave a distinctive signature in proglacial lake sediments?

Published online by Cambridge University Press:  27 December 2024

Guido Brignone*
Affiliation:
Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba, Córdoba, X5016GCA, Argentina
Matias Romero
Affiliation:
Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba, Córdoba, X5016GCA, Argentina Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, X5016GCA, Argentina Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
Maximillian Van Wyk de Vries
Affiliation:
Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota 55455, USA School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
Emi Ito
Affiliation:
Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA Continental Scientific Drilling Facility, Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA.
Mark Shapley
Affiliation:
Continental Scientific Drilling Facility, Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA.
Eduardo Luis Piovano
Affiliation:
Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba, Córdoba, X5016GCA, Argentina Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, X5016GCA, Argentina
*
Corresponding author: Guido Brignone; Email: [email protected]

Abstract

Lake sediment provides a valuable record of past environmental change. However, the controls on sedimentation in proglacial lakes and their relation to glacier retreat remain poorly understood. In this study we analyze glaciolacustrine sediment production and deposition in Canal de los Témpanos, Lago Argentino, Argentine Patagonia. We associate temporal changes in the sedimentologic and geochemical characteristics analyzed from Lago Argentino cores with Late Holocene fluctuations of the Perito Moreno and Ameghino glaciers. We show that the dominant sediment source at our study site switched from Ameghino to Perito Moreno Glacier after the recession of Ameghino Glacier and the formation of the marginal ice-contact lake into which it currently calves. Spectacular ice-dam rupture events generated by Perito Moreno Glacier redistribute large volumes of water through the lake system but do not leave a significant sedimentary signature. Our results demonstrate that a detailed analysis of sedimentologic, petrophysical, and geochemical changes in lake cores can provide insight into regional glacial dynamics and sedimentary processes even in complex systems with multiple competing glacial sources and that changing glacier geometries during retreat can provide insights into the provenience of the sediments.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Abdel Jaber, W., Rott, H., Floricioiu, D., Wuite, J., Miranda, N., 2019. Heterogeneous spatial and temporal pattern of surface elevation change and mass balance of the Patagonian ice fields between 2000 and 2016. The Cryosphere 13, 25112535.CrossRefGoogle Scholar
Aniya, M., 1996. Holocene variations of Ameghino Glacier, southern Patagonia. Holocene 6, 247252.CrossRefGoogle Scholar
Aniya, M., Sato, H., 1995. Morphology of Ameghino Glacier and landforms of Ameghino Valley, southern Patagonia. Bulletin of Glacier Research 13, 6982.Google Scholar
Aniya, M., Skvarca, P., 1992. Characteristics and variations of Upsala and Moreno glaciers, southern Patagonia. Bulletin of Glacier Research 10, 3953.Google Scholar
Aniya, M., Skvarca, P., 2012. Little ice age advances of Glaciar Perito Moreno, Hielo Patagónico Sur, South America. Bulletin of Glaciological Research 30, 18.CrossRefGoogle Scholar
Ashley, G.M., 2002. Glaciolacustrine environments. In: Menzies, J. (Ed.), Modern and Past Glacial Environments. Butterworth-Heinemann, Oxford, pp. 335359.CrossRefGoogle Scholar
Ballantyne, C.K., 2005. Paraglacial landsystems. In: Evans, D.J.A. (Ed.), Glacial Landsystems. Routledge, London, pp. 432460.Google Scholar
Boes, E., Van Daele, M., Moernaut, J., Schmidt, S., Jensen, B.J.L., Praet, N., Kaufman, D., Haeussler, P., Loso, M.G., De Batist, M., 2018. Varve formation during the past three centuries in three large proglacial lakes in south-central Alaska. Geological Society of America Bulletin 130, 757774.CrossRefGoogle Scholar
Bornhold, B.D., Ren, P., Prior, D.B., 1994. High-frequency turbidity currents in British Columbia fjords. Geo-Marine Letters 14, 238243.CrossRefGoogle Scholar
Caffau, M., Lodolo, E., Donda, F., Zecchin, M., Lozano, J.G., Nasi, F., Bran, D.M., Tassone, A., Caburlotto, A., 2021. Stratigraphic signature of the Perito Moreno ice-dammings during the Little Ice Age (southern Patagonia, Argentina). Holocene 32, 174182.CrossRefGoogle Scholar
Carrivick, J.L., James, W.H.M., Grimes, M., Sutherland, J.L., Lorrey, A.M., 2020. Ice thickness and volume changes across the Southern Alps, New Zealand, from the little ice age to present. Scientific Reports 10, 13392. https://doi.org/10.1038/s41598-020-70276-8CrossRefGoogle ScholarPubMed
Carrivick, J.L., Tweed, F.S., 2013. Proglacial lakes: character, behaviour and geological importance. Quaternary Science Reviews 78, 3452.CrossRefGoogle Scholar
Cohen, A.S., 2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press, New York.CrossRefGoogle Scholar
Davies, B.J., Glasser, N.F., 2012. Accelerating shrinkage of Patagonian glaciers from the Little Ice Age (~AD 1870) to 2011. Journal of Glaciology 58, 10631084.CrossRefGoogle Scholar
De Angelis, H., 2014. Hypsometry and sensitivity of the mass balance to changes in equilibrium-line altitude: the case of the Southern Patagonia Icefield. Journal of Glaciology 60, 1428.CrossRefGoogle Scholar
Fedotova, A., Magnani, M.B., 2021. Seismic stratigraphy of neoglacial ice fluctuations in Lago Argentino (Patagonia, Argentina). AGU Fall Meeting 2021, New Orleans, Louisiana, December 1317, 2021, EP15A-08. https://ui.adsabs.harvard.edu/abs/2021AGUFMEP15A..08F/abstractGoogle Scholar
Fitzsimons, S., Howarth, J., 2018. Glaciolacustrine processes. In: Menzies, J., van der Meer, J.J.M. (Eds.), Past Glacial Environments (Second Edition). Elsevier, Amsterdam, pp. 309334.CrossRefGoogle Scholar
Francus, P., Bradley, R.S., Lewis, T., Abbott, M., Retelle, M., Stoner, J.S., 2008. Limnological and sedimentary processes at Sawtooth Lake, Canadian High Arctic, and their influence on varve formation. Journal of Paleolimnology 40, 963985.CrossRefGoogle Scholar
Garcia Agudo, E., 1998. Global distribution of 137Cs inputs for soil erosion and sedimentation studies. In: International Atomic Energy Agency (Ed.), Use of 137Cs in the Study of Soil Erosion and Sedimentation. IAEA-TECDOC-1028. International Atomic Energy Agency, Vienna, pp. 117121.Google Scholar
Garreaud, R.D., Vuille, M., Compagnucci, R., Marengo, J., 2009. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281, 180195.CrossRefGoogle Scholar
Garreaud, R., Lopez, P., Minvielle, M., Rojas, M., 2013. Large-scale control on the Patagonian climate. Journal of Climate 26, 215230.CrossRefGoogle Scholar
Goyenechea, C., 2017. EIA Aprovechamientos Hidroeléctricos del Río Santa Cruz (Presidente Dr. Néstor C. Kirchner y Gobernador Jorge Cepernic), Provincia de Santa Cruz. Serman & Asociados S.A., Buenos Aires.Google Scholar
Guerrido, C.M., Villalba, R., Rojas, F., 2014. Documentary and tree-ring evidence for a long-term interval without ice impoundments from Glaciar Perito Moreno, Patagonia, Argentina. Holocene 24, 16861693.CrossRefGoogle Scholar
Harrison, S., Kargel, J.S., Huggel, C., Reynolds, J., Shugar, D.H., Betts, R.A., Emmer, A., et al., 2018. Climate change and the global pattern of moraine-dammed glacial lake outburst floods. Cryosphere 12, 11951209.CrossRefGoogle Scholar
Kaplan, M.R., Schaefer, J.M., Strelin, J.A., Denton, G.H., Anderson, R.F., Vandergoes, M.J., Finkel, R.C., et al., 2016. Patagonian and southern South Atlantic view of Holocene climate. Quaternary Science Reviews 141, 112125.CrossRefGoogle Scholar
Kaplan, M.R., Strelin, J.A., Schaefer, J.M., Denton, G.H., Finkel, R.C., Schwartz, R., Putnam, A.E., Vandergoes, M.J., Goehring, B.M., Travis, S.G., 2011. In-situ cosmogenic 10Be production rate at Lago Argentino, Patagonia: implications for late-glacial climate chronology. Earth and Planetary Science Letters 309, 2132.CrossRefGoogle Scholar
Koppes, M.N., Hallet, B., 2002. Influence of rapid glacial retreat on the rate of erosion by tidewater glaciers. Geology 30, 4750.2.0.CO;2>CrossRefGoogle Scholar
Lamoureux, S.F., Gilbert, R., Lewis, T., 2002. Lacustrine sedimentary environments in High Arctic proglacial Bear Lake, Devon Island, Nunavut, Canada. Arctic, Antarctic, and Alpine Research 34, 130141.CrossRefGoogle Scholar
Lenaerts, J.T.M., Van Den Broeke, M.R., Van Wessem, J.M., Van De Berg, W.J., Van Meijgaard, E., Van Ulft, L.H., Schaefer, M., 2014. Extreme precipitation and climate gradients in Patagonia revealed by high-resolution regional atmospheric climate modeling. Journal of Climate 27, 46074621.CrossRefGoogle Scholar
Lewis, T., Gilbert, R., Lamoureux, S.F., 2002. Spatial and temporal changes in sedimentary processes at Proglacial Bear Lake, Devon Island, Nunavut, Canada. Arctic, Antarctic, and Alpine Research 34, 119129.CrossRefGoogle Scholar
Lodolo, E., Donda, F., Lozano, J., Baradello, L., Romeo, R., Bran, D.M., Tassone, A., 2020. The submerged footprint of Perito Moreno glacier. Scientific Reports 10, 16437. https://doi.org/10.1038/s41598-020-73410-8CrossRefGoogle ScholarPubMed
Lozano, J., Donda, F., Bran, D., Lodolo, E., Baradello, L., Romeo, R., Vilas, J.F., Grossi, M., Tassone, A., 2020. Depositional setting of the southern arms of Lago Argentino (southern Patagonia). Journal of Maps 16, 324334.CrossRefGoogle Scholar
Magnani, M.B., Fedotova, A., Peterson, D.E., MacPhail, M.D., 2019. Constraints on glacial isostatic adjustment in the Southern Patagonia Icefield from high-resolution seismic reflection imaging of glacial lacustrine deposits in the Lago Argentino, Argentina. AGU Fall Meeting 2019, San Francisco, California, December 913, 2019, C21F-1516. https://ui.adsabs.harvard.edu/abs/2019AGUFM.C21F1516M/abstractGoogle Scholar
Masiokas, M.H., Rivera, A., Espizua, L.E., Villalba, R., Delgado, S., Aravena, J.C., 2009. Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 281, 242268.CrossRefGoogle Scholar
Mercer, J.H., 1968. Variations of some Patagonian glaciers since the Late-Glacial. American Journal of Science 266, 91109.CrossRefGoogle Scholar
Miller, L., MacGregor, K., Van Wyk de Vries, M., Ito, E., Shapley, M.D., Brignone, G., Romero, M., 2022. Using cesium-137 to determine sedimentation patterns in two proglacial lakes – Lago Argentino, Southern Patagonian icefield, Argentina, and Lake Josephine, Glacier National Park, Montana, USA. Geological Society of America Abstracts with Programs 54(5). https://doi.org/10.1130/abs/2022AM-377913Google Scholar
Minowa, M., Sugiyama, S., Sakakibara, D., Sawagaki, T., 2015. Contrasting glacier variations of Glaciar Perito Moreno and Glaciar Ameghino, Southern Patagonia Icefield. Annals of Glaciology 56, 2632.CrossRefGoogle Scholar
Mulder, T., Alexander, J., 2001. The physical character of subaqueous sedimentary density flow and their deposits. Sedimentology 48, 269299.CrossRefGoogle Scholar
Mulder, T., Cochonat, P., 1996. Classification of offshore mass movements. Journal of Sedimentary Research 66, 4357.Google Scholar
Nullo, F., Blasco, C., Risso, C., Combina, A., Otamendi, J., 2006. Hoja Geológica 5172-I y 5175II El Calafate, Provincia de Santa Cruz. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Bulletin 396, Buenos Aires.Google Scholar
Pasquini, A.I., Depetris, P.J., 2011. Southern Patagonia's Perito Moreno Glacier, Lake Argentino, and Santa Cruz River hydrological system: an overview. Journal of Hydrology 405, 4856.CrossRefGoogle Scholar
Piret, L., Bertrand, S., Nguyen, N., Hawkings, J., Rodrigo, C., Wadham, J., 2022. Long-lasting impacts of a 20th century glacial lake outburst flood on a Patagonian fjord-river system (Pascua River). Geomorphology 399, 108080. https://doi.org/10.1016/J.GEOMORPH.2021.108080CrossRefGoogle Scholar
Rabassa, J., Coronato, A.M., Salemme, M., 2005. Chronology of the Late Cenozoic Patagonian glaciations and their correlation with biostratigraphic units of the Pampean region (Argentina). Journal of South American Earth Sciences 20, 81103.CrossRefGoogle Scholar
Reed, J.A., 2007. The Paleontological Stratigraphic Interval Construction and Analysis Tool. Master's thesis, Iowa State University, Ames, Iowa. https://doi.org/10.31274/rtd-180813-16237CrossRefGoogle Scholar
Richter, A., Marderwald, E., Hormaechea, J.L., Mendoza, L., Perdomo, R., Connon, G., Scheinert, M., Horwath, M., Dietrich, R., 2016. Lake-level variations and tides in Lago Argentino, Patagonia: insights from pressure tide gauge records. Journal of Limnology, 75, 6277.Google Scholar
Rott, H., Stuefer, M., Nagler, T., Riedl, C., 2004. Recent fluctuations and damming of glaciar Perito Moreno, Patagonia, observed by means of ERS and Envisat imagery. In: Lacoste, H., Ouwehand, L. (Eds.), Proceedings of the 2004 Envisat & ERS Symposium, Salzburg, Austria, September 6–10, 2004. European Space Agency, Noordwijk.Google Scholar
Schnurrenberger, D., Russell, J., Kelts, K., 2003. Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology 29, 141154.CrossRefGoogle Scholar
Shugar, D.H., Burr, A., Haritashya, U.K., Kargel, J.S., Watson, C.S., Kennedy, M.C., Bevington, A.R., Betts, R.A., Harrison, S., Strattman, K., 2020. Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change 10, 939945.CrossRefGoogle Scholar
Smith, N.D., 1981. The effect of changing sediment supply on sedimentation in a glacier-fed lake. Arctic & Alpine Research 13, 7582.CrossRefGoogle Scholar
Smol, J.P., 1992. Paleolimnology: an important tool for effective ecosystem management. Journal of Aquatic Ecosystem Health 1, 4958.CrossRefGoogle Scholar
Strelin, J.A., Denton, G.H., Vandergoes, M.J., Ninnemann, U.S., Putnam, A.E., 2011. Radiocarbon chronology of the late-glacial Puerto Bandera moraines, Southern Patagonian Icefield, Argentina. Quaternary Science Reviews 30, 25512569.CrossRefGoogle Scholar
Strelin, J.A., Kaplan, M.R., Vandergoes, M.J., Denton, G.H., Schaefer, J.M., 2014. Holocene glacier history of the Lago Argentino basin, Southern Patagonian Icefield. Quaternary Science Reviews 101, 124145.CrossRefGoogle Scholar
Strelin, J.A., Malagnino, E.C., 1996. Glaciaciones Pleistocenas del Lago Argentino y Alto Valle del Río Santa Cruz. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Actas IV (January 1996). XIII Congreso Geológico Argentino, Buenos Aires, Argentina, pp. 311325.Google Scholar
Sturm, M., Matter, A., 1978. Turbidites and varves in Lake Brienz (Switzerland): deposition of clastic detritus by density currents. In: Matter, A., Tucker, M.E. (Eds.), Modern and Ancient Lake Sediments. International Association of Sedimentologists Special Publication 2. Blackwell Scientific Publications, Oxford, pp. 147168.CrossRefGoogle Scholar
Sugiyama, S., Minowa, M., Sakakibara, D., Skvarca, P., Sawagaki, T., Ohashi, Y., Naito, N., Chikita, K., 2016. Thermal structure of proglacial lakes in Patagonia. Journal of Geophysical Research: Earth Surface 121, 22702286.CrossRefGoogle Scholar
Sugiyama, S., Skvarca, P., Naito, N., Enomoto, H., Tsutaki, S., Tone, K., Marinsek, S., Aniya, M., 2011. Ice speed of a calving glacier modulated by small fluctuations in basal water pressure. Nature Geoscience 4, 597600.CrossRefGoogle Scholar
Sutherland, J.L., Carrivick, J.L., Gandy, N., Shulmeister, J., Quincey, D.J., Cornford, S.L., 2020. Proglacial lakes control glacier geometry and behavior during recession. Geophysical Research Letters 47, e2020GL088865. https://doi.org/10.1029/2020GL088865CrossRefGoogle Scholar
Tweed, F.S., Carrivick, J.L., 2015. Deglaciation and proglacial lakes. Geology Today 31, 96102.CrossRefGoogle Scholar
Van Wyk de Vries, M., Ito, E., Romero, M., Shapley, M., Brignone, G., 2023a. Periodicity of the Southern Annular Mode in Southern Patagonia, insight from the Lago Argentino varve record. Quaternary Science Reviews 304, 108009, https://doi.org/10.1016/j.quascirev.2023.108009CrossRefGoogle Scholar
Van Wyk de Vries, M., Ito, E., Shapley, M., Brignone, G., 2021. Semi-automated counting of complex varves through image autocorrelation. Quaternary Research 104, 89100.CrossRefGoogle Scholar
Van Wyk de Vries, M., Ito, E., Shapley, M., Brignone, G., Romero, M., Wickert, A.D., Miller, L.H., MacGregor, K.R., 2022. Physical limnology and sediment dynamics of Lago Argentino, the world's largest ice-contact lake. Journal of Geophysical Research: Earth Surface 127, e2022JF006598. https://doi.org/10.1029/2022JF006598Google Scholar
Van Wyk de Vries, M., Ito, E., Shapley, M., Romero, M., Brignone, G., 2023b. Investigating paleoclimate and current climatic controls at Lago Argentino using sediment pixel intensity time series. Journal of Paleolimnology 70, 311330.CrossRefGoogle Scholar
Van Wyk De Vries, M., Romero, M., Penprase, S.B., Ng, G.-H.C., Wickert, A.D., 2023c. Increasing rate of 21st century volume loss of the Patagonian Icefields measured from proglacial river discharge. Journal of Glaciology 69, 11871202.CrossRefGoogle Scholar
Veh, G., Korup, O., Walz, A., 2020. Hazard from Himalayan glacier lake outburst floods. Proceedings of the National Academy of Sciences of the United States of America 117, 907912.CrossRefGoogle ScholarPubMed
Warren, C.R., 1994. Freshwater calving and anomalous glacier oscillations: recent behaviour of Moreno and Ameghino Glaciers, Patagonia. Holocene 4, 422429.CrossRefGoogle Scholar
Supplementary material: File

Brignone et al. supplementary material 1

Brignone et al. supplementary material
Download Brignone et al. supplementary material 1(File)
File 9.6 KB
Supplementary material: File

Brignone et al. supplementary material 2

Brignone et al. supplementary material
Download Brignone et al. supplementary material 2(File)
File 140.3 KB
Supplementary material: File

Brignone et al. supplementary material 3

Brignone et al. supplementary material
Download Brignone et al. supplementary material 3(File)
File 550.6 KB
Supplementary material: File

Brignone et al. supplementary material 4

Brignone et al. supplementary material
Download Brignone et al. supplementary material 4(File)
File 1.9 MB
Supplementary material: File

Brignone et al. supplementary material 5

Brignone et al. supplementary material
Download Brignone et al. supplementary material 5(File)
File 9.1 KB