Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T20:44:08.605Z Has data issue: false hasContentIssue false

Distribution, evidence for internal ice, and possible hydrologic significance of rock glaciers in the Uinta Mountains, Utah, USA

Published online by Cambridge University Press:  30 May 2018

Jeffrey S. Munroe*
Affiliation:
Geology Department, Middlebury College, Middlebury, Vermont 05753USA
*
*Corresponding author at: Geology Department, Middlebury College, Middlebury, Vermont 05753 USA. E-mail address: [email protected] (J.S. Munroe).

Abstract

Mapping at a scale of 1:5000 identified 395 rock glaciers in the Uinta Mountains, Utah. The majority of these have areas<20 ha, although the largest covers 97 ha. Rock glaciers have a mean elevation of 3285 m above sea level (range of 2820 to 3744 m above sea level) and exhibit a preference for northerly aspects. Sixty (15%) have a tongue-shaped morphology, whereas 335 (85%) are lobate features protruding from talus along valley walls. Tongue-shaped rock glaciers are found at significantly higher elevations and receive considerably less direct solar radiation each year than lobate rock glaciers. Winter ground temperatures atop representative rock glaciers drop to between −3°C and −5°C. This result, combined with ~0°C water discharging in the summer and water ages >1 year, suggests that at least some of these landforms contain buried ice. Late summer water discharge from two rock glaciers exhibits higher pH and significantly elevated concentrations of some ions compared with lake water, consistent with ablation of internal ice after melting of winter snowpack is complete. Although the amount of water discharging from individual rock glaciers may be small, the aggregate discharge from all rock glaciers and talus could constitute a significant component of streamflow in late summer and fall.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackert, R.P., 1998. A rock glacier/debris-covered glacier system at Galena Creek, Absaroka Mountains, Wyoming. Geografiska Annaler: Series A, Physical Geography 80, 267276.CrossRefGoogle Scholar
Azócar, G.F., Brenning, A., 2010. Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27–33 S). Permafrost and Periglacial Processes 21, 4253.CrossRefGoogle Scholar
Barnes, R.T., Williams, M.W., Parman, J.N., Hill, K., Caine, N., 2014. Thawing glacial and permafrost features contribute to nitrogen export from Green Lakes Valley, Colorado Front Range, USA. Biogeochemistry 117, 413430.CrossRefGoogle Scholar
Barsch, D., 1987. The problem of the ice-cored rock glacier. In: Giardino, J.R., Schroder, J.F.Jr, and Vitek, J.D. (eds.), Rock Glaciers. Allen & Unwin, Boston, Massachusetts, pp. 4564.Google Scholar
Berger, J., Krainer, K., Mostler, W., 2004. Dynamics of an active rock glacier (Ötztal Alps, Austria). Quaternary Research 62, 233242.CrossRefGoogle Scholar
Berthling, I., 2011. Beyond confusion: rock glaciers as cryo-conditioned landforms. Geomorphology 131, 98106.CrossRefGoogle Scholar
Blagbrough, J.W., 1994. Late Wisconsin climatic inferences from rock glaciers in south-central and west-central New Mexico and east-central Arizona. New Mexico Geology 16, 6571.Google Scholar
Blagbrough, J.W., Farkas, S.E., 1968. Rock glaciers in the San Mateo mountains, south-central New Mexico. American Journal of Science 266, 812823.CrossRefGoogle Scholar
Bradley, M.D., 1995. Timing of the Laramide rise of the Uinta Mountains, Utah and Colorado. In: Jones, R.W. (ed.): Resources of southwestern Wyoming: Wyoming Geological Association 1995 Field Conference Guidebook. Casper, Wyoming, p. 31–44.Google Scholar
Caine, N., 1974. The geomorphic processes of the alpine environment. In: Ives, J.D., Barry, R.G. (eds.), Arctic and Alpine Environments. Methuen, London, pp. 721–748.Google Scholar
Caine, N., 2010. Recent hydrologic change in a Colorado alpine basin: an indicator of permafrost thaw? Annals of Glaciology 51, 130134.CrossRefGoogle Scholar
Capps, S.R., 1910. Rock glaciers in Alaska. The Journal of Geology 18, 359375.CrossRefGoogle Scholar
Cecil, L.D., Green, J.R., Vogt, S., Michel, R., Cottrell, G., 1998. Isotopic composition of ice cores and meltwater from Upper Fremont Glacier and Galena Creek rock glacier, Wyoming. Geografiska Annaler: Series A, Physical Geography 80, 287292.CrossRefGoogle Scholar
Clark, D.H., Steig, E.J., Potter, N., Updike, A., Fitzpatrick, J., Clark, G.M., 1996. Old ice in rock glaciers may provide long-term climate records. Eos, Transactions of the American Geophysical Union 77, 217222.CrossRefGoogle Scholar
Clow, D.W., Schrott, L., Webb, R., Campbell, D.H., Torizzo, A., Dornblaser, M., 2003. Ground water occurrence and contributions to streamflow in an alpine catchment, Colorado Front Range. Groundwater 41, 937950.CrossRefGoogle Scholar
Corte, A., 1976. The hydrological significance of rock glaciers. Journal of Glaciology 17, 157158.CrossRefGoogle Scholar
Dehler, C.M., Porter, S.M., De Grey, L.D., Sprinkel, D.A., Brehm, A., 2007. The Neoproterozoic Uinta Mountain Group revisited; a synthesis of recent work on the Red Pine Shale and related undivided clastic strata, northeastern Utah, U.S.A. Special Publication - Society for Sedimentary Geology 86, 151166.Google Scholar
Gärtner-Roer, I., 2012. Sediment transfer rates of two active rockglaciers in the Swiss Alps. Geomorphology 167–168, 4550.CrossRefGoogle Scholar
Geiger, S.T., Daniels, J.M., Miller, S.N., Nicholas, J.W., 2014. Influence of rock glaciers on stream hydrology in the La Sal Mountains, Utah. Arctic, Antarctic, and Alpine Research 46, 645658.CrossRefGoogle Scholar
Giardino, J.R., 1983. Movement of ice-cemented rock glaciers by hydrostatic pressure: an example from Mt. Mestas, Colorado. Zeitschrift für Geomorphologie 27, 297310.CrossRefGoogle Scholar
Giardino, J.R., Shroder, J.F., Vitek, J.D., 1987. Rock Glaciers. Allen and Unwin, London.Google Scholar
Giardino, J.R., Vitek, J.D., 1988. The significance of rock glaciers in the glacial-periglacial landscape continuum. Journal of Quaternary Science 3, 97103.CrossRefGoogle Scholar
Giardino, J.R., Vitek, J.D., DeMorett, J.L., 1992. A model of water movement in rock glaciers and associated water characteristics. In: Dixon, J.C., and Abrahams, A.D. (eds.), Periglacial Geomorphology. Wiley, Chichester 159184.Google Scholar
Grogger, P.K., 1975. Neoglaciation of the North-ern slope of the High Uintas Primitive Area, Utah. Great Plains-Rocky Mountain Geographical Journal 4, 3743.Google Scholar
Haeberli, W., 1973. Die Basis-Temperatur der winterlichen Schneedecke als moglicher Indikator fur die Verbreitung von Permafrost in den Alpen. Zeitschrift fur Gletscherkunde und Glazialgeologie 9, 221227.Google Scholar
Haeberli, W., Patzelt, G., 1982. Permafrostkartierung im Gebiet der Hochebenkar-Blockgletscher, Obergurgl, Ötztaler Alpen. Zeitschrift für Gletscherkunde und Glazialgeologie 18, 127150.Google Scholar
Hamilton, S.J., Whalley, W.B., 1995. Rock glacier nomenclature: a re-assessment. Geomorphology 14, 7380.CrossRefGoogle Scholar
Hoelzle, M., Wegmann, M., Krummenacher, B., 1999. Miniature temperature data loggers for mapping and monitoring of permafrost in high mountain areas: first experience from the Swiss Alps. Permafrost and Periglacial Processes 10, 113124.3.0.CO;2-A>CrossRefGoogle Scholar
Humlum, O., 1998. The climatic significance of rock glaciers. Permafrost and Periglacial Processes 9, 375395.3.0.CO;2-0>CrossRefGoogle Scholar
Humlum, O., Christiansen, H.H., Juliussen, H., 2007. Avalanche-derived rock glaciers in Svalbard. Permafrost and Periglacial Processes 18, 7588.CrossRefGoogle Scholar
Isaksen, K., Ødegård, R.S., Eiken, T., Sollid, J.L., 2000. Composition, flow and development of two tongue-shaped rock glaciers in the permafrost of Svalbard. Permafrost and Periglacial Processes 11, 241257.3.0.CO;2-A>CrossRefGoogle Scholar
Jacoby, G.C., 1975. An Overview of the Effect of Lake Powell on Colorado River Basin Water Supply and Environment. Lake Powell Research Project, Los Angeles.Google Scholar
Janke, J.R., 2007. Colorado Front Range Rock Glaciers: Distribution and Topographic Characteristics. Arctic, Antarctic, and Alpine Research 39, 7483.CrossRefGoogle Scholar
Janke, J.R., Bellisario, A.C., Ferrando, F.A., 2015. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile. Geomorphology 241, 98121.CrossRefGoogle Scholar
Janke, J.R., Ng, S., Bellisario, A., 2017. An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile. Geomorphology 296, 142152.CrossRefGoogle Scholar
Jeppson, R.W., 1968. Utah Water Research Laboratory, Hydrologic Atlas of Utah. Reports. Paper 297. https://digitalcommons.usu.edu/water_rep/297 Google Scholar
Johnson, B.G., Thackray, G.D., Van Kirk, R., 2007. The effect of topography, latitude, and lithology on rock glacier distribution in the Lemhi Range, central Idaho, USA. Geomorphology 91, 3850.CrossRefGoogle Scholar
Jones, D.B., Harrison, S., Anderson, K., Selley, H.L., Wood, J.L., Betts, R.A., 2018. The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya. Global and Planetary Change 160, 123142.CrossRefGoogle Scholar
Kääb, A., Frauenfelder, R., Roer, I., 2007. On the response of rockglacier creep to surface temperature increase. Global and Planetary Change 56, 172187.CrossRefGoogle Scholar
Kääb, A., Weber, M., 2004. Development of transverse ridges on rock glaciers: field measurements and laboratory experiments. Permafrost and Periglacial Processes 15, 379391.CrossRefGoogle Scholar
Krainer, K., Bressan, D., Dietre, B., Haas, J.N., Hajdas, I., Lang, K., Mair, V., et al., 2015. A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy). Quaternary Research 83, 324335.CrossRefGoogle Scholar
Krainer, K., Mostler, W., 2000. Reichenkar rock glacier: a glacier derived debris-ice system in the western Stubai Alps, Austria. Permafrost and Periglacial Processes 11, 267275.3.0.CO;2-E>CrossRefGoogle Scholar
Krainer, K., Mostler, W., 2002. Hydrology of active rock glaciers: examples from the Austrian Alps. Arctic, Antarctic, and Alpine Research, 142149.CrossRefGoogle Scholar
Krainer, K., Mostler, W., Spötl, C., 2007. Discharge from active erock glaciers, Austria Alps: a stable isotope approach. Austrian Journal of Earth Sciences 100, 102112.Google Scholar
Laabs, B.J.C., Carson, E.C., 2005. Glacial geology of the southern Uinta Mountains. In: Dehler, C.M., Pederson, J.L., Sprinkel, D.A., Kowallis, B.J. (eds.), Uinta Mountain Geology. Utah Geological Survey: Salt Lake City, Utah. pp. 235253.Google Scholar
Laabs, B.J.C., Refsnider, K.A., Munroe, J.S., Mickelson, D.M., Applegate, P.J., Singer, B.S., Caffee, M.W., 2009. Latest Pleistocene glacial chronology of the Uinta Mountains: support for moisture-driven asynchrony of the last deglaciation. Quaternary Science Reviews 28, 11711187.CrossRefGoogle Scholar
Leopold, M., Lewis, G., Dethier, D., Caine, N., Williams, M.W., 2015. Cryosphere: ice on Niwot Ridge and in the Green Lakes Valley, Colorado Front Range. Plant Ecology and Diversity 8, 625638.CrossRefGoogle Scholar
Leopold, M., Williams, M.W., Caine, N., Völkel, J., Dethier, D., 2011. Internal structure of the Green Lake 5 rock glacier, Colorado Front Range, USA. Permafrost and Periglacial Processes 22, 107119.CrossRefGoogle Scholar
Liu, L., Millar, C.I., Westfall, R.D., Zebker, H.A., 2013. Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR. The Cryosphere 7, 11091119.Google Scholar
Martin, H.E., Whalley, W.B., 1987. Rock glaciers: part 1: rock glacier morphology: classification and distribution. Progress in Physical Geography 11, 260282.CrossRefGoogle Scholar
Michel, R.L., Naftz, D.L., 1995. Use of sulfur-35 and tritium to study runoff from an alpine glacier, Wind River Range, Wyoming. International Association of Hydrological Sciences Proceedings and Reports 228, 441–444.Google Scholar
Millar, C.I., Westfall, R.D., 2008. Rock glaciers and related periglacial landforms in the Sierra Nevada, CA, USA; inventory, distribution and climatic relationships. Quaternary International 188, 90104.CrossRefGoogle Scholar
Millar, C.I., Westfall, R.D., 2010. Distribution and climatic relationships of the American pika (Ochotona princeps) in the Sierra Nevada and western Great Basin, USA; periglacial landforms as refugia in warming climates. Arctic, Antarctic, and Alpine Research 42, 7688.CrossRefGoogle Scholar
Millar, C.I., Westfall, R.D., Delany, D.L., 2013. Thermal and hydrologic attributes of rock glaciers and periglacial talus landforms: Sierra Nevada, California, USA. Quaternary International 310, 169180.CrossRefGoogle Scholar
Millar, C.I., Westfall, R.D., Evenden, A., Holmquist, J.G., Schmidt-Gengenbach, J., Franklin, R.S., Nachlinger, J., Delany, D.L., 2015. Potential climatic refugia in semi-arid, temperate mountains: Plant and arthropod assemblages associated with rock glaciers, talus slopes, and their forefield wetlands, Sierra Nevada, California, USA. Quaternary International 387, 106121.CrossRefGoogle Scholar
Monnier, S., Kinnard, C., 2013. Internal structure and composition of a rock glacier in the Andes (upper Choapa valley, Chile) using borehole information and ground-penetrating radar. Annals of Glaciology 54, 6172.CrossRefGoogle Scholar
Müller, J., Vieli, A., Gärtner-Roer, I., 2016. Rock glaciers on the run - understanding rock glacier landform evolution and recent changes from numerical flow modeling. The Cryosphere 10, 28652886.CrossRefGoogle Scholar
Munroe, J.S., 2002. Timing of postglacial cirque reoccupation in the northern Uinta Mountains, northeastern Utah, USA. Arctic, Antarctic, and Alpine Research 34, 3848.CrossRefGoogle Scholar
Munroe, J.S., 2005. Glacial geology of the northern Uinta Mountains. In: Dehler, C.M., Pederson, J.L., Sprinkel, D.A., Kowallis, B.J. (eds.), Uinta Mountain Geology. Utah Geological Survey: Salt Lake City, Utah. pp. 215234.Google Scholar
Munroe, J.S., 2006. Investigating the spatial distribution of summit flats in the Uinta Mountains of northeastern Utah, USA. Geomorphology 75, 437449.CrossRefGoogle Scholar
Munroe, J.S., Klem, C.M., Bigl, M.F., 2013. A lacustrine sedimentary record of Holocene periglacial activity from the Uinta Mountains, Utah, U.S.A. Quaternary Research 79, 101109.CrossRefGoogle Scholar
Munroe, J.S., Laabs, B.J.C., 2009. Glacial Geologic Map of the Uinta Mountains Area, Utah and Wyoming. Utah Geological Survey Miscellaneous Publication, Utah Geological Survey: Salt Lake City, Utah. 094DM.Google Scholar
Munroe, J.S., Laabs, B.J., 2017. Combining radiocarbon and cosmogenic ages to constrain the timing of the last glacial-interglacial transition in the Uinta Mountains, Utah, USA. Geology 45, 171174.CrossRefGoogle Scholar
Nicholas, J.W., Butler, D.R., 1996. Application of relative-age dating techniques on rock glaciers of the La Sal Mountains, Utah: an interpretation of Holocene paleoclimates. Geografiska Annaler: Series A, Physical Geography 78A, 118.Google Scholar
Outcalt, S.I., Benedict, J.B., 1965. Photo-interpretation of two types of rock glacier in the Colorado Front Range, USA. Journal of Glaciology 5, 849856.CrossRefGoogle Scholar
Potter, N., 1972. Ice-cored rock glacier, Galena Creek, northern Absaroka Mountains, Wyoming. Geological Society of America Bulletin 83, 30253058.CrossRefGoogle Scholar
Potter, N., Steig, E.J., Clark, D.H., Speece, M.A., Clark, G.M., Updike, A.B., 1998. Galena Creek rock glacier revisited—New observations on an old controversy. Geografiska Annaler: Series A, Physical Geography 80, 251265.CrossRefGoogle Scholar
Rangecroft, S., Harrison, S., Anderson, K., 2015. Rock Glaciers as Water Stores in the Bolivian Andes: An Assessment of Their Hydrological Importance. Arctic, Antarctic, and Alpine Research 47, 8998.CrossRefGoogle Scholar
Refsnider, K.A., Brugger, K.A., 2007. Rock glaciers in central Colorado, USA, as indicators of Holocene climate change. Arctic, Antarctic, and Alpine Research 39, 127136.CrossRefGoogle Scholar
Schlosser, P., Stute, M., Dörr, H., Sonntag, C., Münnich, K.O., 1988. Tritium/3He dating of shallow groundwater. Earth and Planetary Science Letters 89, 353362.CrossRefGoogle Scholar
Sears, J., Graff, P., Holden, G., 1982. Tectonic evolution of lower Proterozoic rocks, Uinta Mountains, Utah and Colorado. Geological Society of America Bulletin 93, 990997.2.0.CO;2>CrossRefGoogle Scholar
Shroder, J.F., 1987. Rock glaciers and slope failures: high Plateaus and LaSal Mountains, Colorado Plateau, Utah, USA. In: Giardino, J.R., Schroder, J.F.Jr, and Vitek, J.D. (eds.), Rock Glaciers. Allen and Unwin, London, pp. 193238.Google Scholar
Stine, M., 2013. Clyde Wahrhaftig and Allan Cox (1959) Rock glaciers in the Alaska Range. Bulletin of the Geological Society of America 70: 383–436. Progress in Physical Geography 37, 130139.CrossRefGoogle Scholar
Tenthorey, G., 1992. Perennial névés and the hydrology of rock glaciers. Permafrost and Periglacial Processes 3, 247252.CrossRefGoogle Scholar
Wahrhaftig, C., Cox, A., 1959. Rock glaciers in the Alaska Range. Geological Society of America Bulletin 70, 383436.CrossRefGoogle Scholar
Whalley, W.B., Azizi, F., 2003. Rock glaciers and protalus landforms: analogous forms and ice sources on Earth and Mars. Journal of Geophysical Research, 108. http://dx.doi.org/10.1029/2002JE001864.Google Scholar
Williams, M.W., Knauf, M., Caine, N., Liu, F., Verplanck, P.L., 2006. Geochemistry and source waters of rock glacier outflow, Colorado Front Range. Permafrost and Periglacial Processes 17, 1333.CrossRefGoogle Scholar
Williams, M.W., Knauf, M., Cory, R., Caine, N., Liu, F., 2007. Nitrate content and potential microbial signature of rock glacier outflow, Colorado Front Range. Earth Surface Processes and Landforms 32, 10321047.CrossRefGoogle Scholar
Winkler, G., Wagner, T., Pauritsch, M., Birk, S., Kellerer-Pirklbauer, A., Benischke, R., Leis, A., Morawetz, R., Schreilechner, M.G., Hergarten, S., 2016. Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria). Hydrogeology Journal 24, 937953.CrossRefGoogle Scholar