Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T05:25:53.737Z Has data issue: false hasContentIssue false

Diatom-inferred aquatic impacts of the mid-Holocene eruption of Mount Mazama, Oregon, USA

Published online by Cambridge University Press:  05 September 2018

Joanne Egan*
Affiliation:
Department of Geography, Edge Hill University, St. Helens Road, Ormskirk, Lancashire, L39 4QP, United Kingdom
Timothy E.H. Allott
Affiliation:
Department of Geography, School of Environment, Education and Development, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
Jeffrey J. Blackford
Affiliation:
Department of Geography, Environment and Earth Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
*
*Corresponding author at: Department of Geography, Edge Hill University, St. Helens Road, Ormskirk, Lancashire, L39 4QP, United Kingdom. E-mail address: [email protected] (J. Egan).

Abstract

High-resolution diatom stratigraphies from mid-Holocene sediments taken from fringe and central locations in Moss Lake, a small lake in the foothills of the Cascade Range, Washington, have been analyzed to investigate the impacts (and duration) of tephra deposition on the aquatic ecosystem. Up to 50 mm of tephra was deposited from the climactic eruption of Mount Mazama 7958–7795 cal yr BP, with coincident changes in the aquatic ecosystem. The diatom response from both cores indicates a change in habitat type following blanket tephra deposition, with a decline in tychoplanktonic Fragilaria brevistriata and Staurosira venter and epiphytic diatom taxa indicating a reduction in aquatic macrophyte abundance. Additionally, the central core shows an increase in tychoplanktonic Aulacoseira taxa, interpreted as a response to increased silica availability following tephra deposition. Partial redundancy analysis, however, provides only limited evidence of direct effects from the tephra deposition, and only from the central core, but significant effects from underlying environmental changes associated with climatic and lake development processes. The analyses highlight the importance of duplicate analyses (fringe and central cores) and vigorous statistical analyses for the robust evaluation of aquatic ecosystem change.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abella, S.E., 1988. The effect of Mt. Mazama ashfall on the planktonic diatom community of Lake Washington. Limnology and Oceanography 33, 13761385.Google Scholar
Anderson, N.J., Renberg, I., 1992. A paleolimnological assessment of diatom production responses to lake acidification. Environmental Pollution 78, 113119.Google Scholar
Ayris, P.M., Delmelle, P., 2012. The immediate environmental effects of tephra emission. Bulletin of Volcanology 74, 19051936.Google Scholar
Barker, P., Telford, R., Merdaci, O., Williamson, D., Taieb, M., Vincens, A., Gibert, E., 2000. The sensitivity of a Tanzanian crater lake to catastrophic tephra input and four millennia of climate change. The Holocene 10, 303310.Google Scholar
Barker, P., Williamson, D., Gasse, F., Gibert, E., 2003. Climatic and volcanic forcing revealed in a 50,000-year diatom record from Lake Massoko, Tanzania. Quaternary Research 60, 368376.Google Scholar
Battarbee, R.W., 1986. Diatom analysis. In: Berglund, B.E. (Ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley and Sons, Chichester, pp. 527570.Google Scholar
Battarbee, R., Kneen, M.J., 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnology and Oceanography 27, 184188.Google Scholar
Bennett, K.D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132, 155170.Google Scholar
Bennett, K.D., 2007. Psimpoll and Pscomb programs for plotting and analysis (accessed February 18, 2015). http://www.chrono.qub.ac.uk/psimpoll/psimpoll.html.Google Scholar
Birks, H.J.B., Lotter, A.F., 1994. The impact of the Laacher See Volcano (11000 yr B.P.) on terrestrial vegetation and diatoms. Journal of Paleolimnology 11, 313322.Google Scholar
Blackford, J.J., Payne, R.J., Heggen, M.P., de la Riva Caballero, A., van der Plicht, J., 2014. Age and impacts of the caldera-forming Aniakchak II eruption in western Alaska. Quaternary Research 82, 8595.Google Scholar
Blinman, E., Mehringer, P.J., Sheppard, J.C., 1979. Pollen influx and the deposition of Mazama and Glacier Peak tephra. In: Sheets, P., Grayson, D. (Eds.), Volcanic Activity and Human Ecology. Academic Press, London, pp. 393425.Google Scholar
Bradbury, P.J., Colman, S.M., Dean, W.E., 2004. Limnological and Climatic Environments at Upper Klamath Lake, Oregon during the past 45 000 years. Journal of Paleolimnology 31, 167188.Google Scholar
Brant, L., Bahls, L., 1995. Paleoenvironmental impacts of volcanic eruptions upon a diatom community. In: Kociolek, J.P., Sullivan, M.J. (Eds.), A Century of Diatom Research in North America: A Tribute to the Distinguished Careers of Charles W. Reimer and Ruth Patrick. Koeltz Scientific, Stuttgart.Google Scholar
Bronk Ramsey, C., 2014. OxCal V. 4.2 (accessed November 20, 2014). https://c14.arch.ox.ac.uk/oxcal/OxCalhtml.Google Scholar
Caballero, M., Vázquez, G., Lozano-García, S., Rodríguez, A., Sosa-Nájera, S., Ruiz-Fernández, A.C., Ortega, B., 2006. Present limnological conditions and recent (ca. 340 yr) palaeolimnology of a tropical lake in the Sierra de Los Tuxtlas, Eastern Mexico. Journal of Paleolimnology 35, 8397.Google Scholar
Colman, S.M., Bradbury, J., McGeehin, J.P., Holmes, C.W., Edginton, D., Sarna-Wojcicki, A.M., 2004. Chronology of sediment deposition in Upper Klamath Lake, Oregon. Journal of Paleolimnology 31, 139149.Google Scholar
Dragovich, J.D., Logan, R.L., Schasses, H.W., Walsh, T.J., Lingley, W.S.J., Norman, D.K., Gerstel, W.J., Lapen, T.J., Schuster, J.E., Meyers, K.D., 2002. Geological Map of Washington—Northwest Quadrant. Washington Division of Geology and Earth Resources Geological Map GM-50, scale 1:250,000. Washington Department of Natural Resources, Olympia.Google Scholar
Egan, J., 2016. Impact and Significance of Tephra Deposition from Mount Mazama and Holocene Climate Variability in the Pacific Northwest USA. PhD Thesis, The University of Manchester, Manchester, United Kingdom.Google Scholar
Egan, J., Fletcher, W.J., Allott, T.E.H., Lane, C.S., Blackford, J.J., Clark, D.H., 2016. The impact and significance of tephra deposition on a Holocene forest environment in the North Cascades, Washington, USA. Quaternary Science Reviews 137, 135155.Google Scholar
Egan, J., Staff, R.A., Blackford, J., 2015. A revised age estimate of the Holocene Plinian eruption of Mount Mazama, Oregon using Bayesian statistical modelling. The Holocene 25, 10541067.Google Scholar
Ehrlich, A., 1995. Atlas of the Inland-water Diatom Flora of Israel. The Geological Survey of Israel and the Israel Academy of Sciences and Humanities, Jerusalem.Google Scholar
Fránková, M., Bojková, J., Poulíčková, A., Hájek, M., 2009. The structure and species richness of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness. Fottea 9, 355368.Google Scholar
Heinrichs, M.L., Walker, I.R., Mathewes, R.W., Hebda, R.J., 1999. Holocene chironomid-inferred salinity and paleovegetation reconstruction from Kilpoola Lake, British Columbia. Géographie physique et Quaternaire 53, 211221.Google Scholar
Hickman, M., Reasoner, M.A., 1994. Diatom responses to late Quaternary vegetation and climate change, and to deposition of two tephras in an alpine and a sub-alpine lake in Yoho National Park, British Columbia. Journal of Paleolimnology 11, 173188.Google Scholar
Hill, M., Gauch, H., 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42, 4758.Google Scholar
Kelly, M.G., Bennion, H., Cox, E.J., Goldsmith, B., Jamieson, J., Juggins, S., Mann, D.G., Telford, R.J., 2005. Craticula. Common freshwater diatoms of Britain and Ireland: an interactive key (accessed November 10, 2015). Environment Agency, Bristol. http://craticula.ncl.ac.uk/EADiatomKey/html/index.html.Google Scholar
Krammer, K., Lange-Bertalot, H., 1991. Süßwasserflora von Mitteleuropa vol. 2/4 Bacillariophyceae. Gustav Fischer Verlag, Stuttgart.Google Scholar
Krammer, K., Lange-Bertalot, H., 1999a. Süßwasserflora von Mitteleuropa vol. 2/1 Bacillariophyceae. Spektrum Akademischer verlag GmbH, Berlin.Google Scholar
Krammer, K., Lange-Bertalot, H., 1999b. Süßwasserflora von Mitteleuropa vol 2/2 Bacillariophyceae. Spektrum Akademischer verlag GmbH, Berlin.Google Scholar
Lallement, M., Macchi, P.J., Vigliano, P., Juarez, S., Rechencq, M., Baker, M., Bouwes, N., Crowl, T., 2016. Rising from the ashes: Changes in salmonid fish assemblages after 30 months of the Puyehue-Cordon Caulle volcanic eruption. The Science of the Total Environment 541, 10411051.Google Scholar
Lepš, J., Smilauer, P., 2014. Multivariate Analysis of Ecological Data Using CANOCO 5. 2nd ed. Cambridge University Press, Cambridge.Google Scholar
Lotter, A.F., Anderson, N.J., 2012. Limnological Responses to Environmental Changes at Inter-annual to Decadal Time-scales. In: Birks, H.J.B., Lotter, A.F., Juggins, S., Smol, J.P. (Eds.), Tracking Environmental Change Using Lake Sediments, Developments in Paleoenvironmental Research 5. Springer, New York, pp. 557578.Google Scholar
Lotter, A.F., Birks, H., 1993. The impact of the Laacher See tephra on terrestrial and aquatic ecosystems in the Black Forest, southern Germany. Journal of Quaternary Science 8, 263276.Google Scholar
Mass, C.F., Portman, D.A., 1989. Major volcanic eruptions and climate: a critical evaluation. Journal of Climate 2, 566593.Google Scholar
McCormick, M.P., Thomason, L.W., Trepte, C.R., 1995. Atmospheric effects of the Mt Pinatubo eruption. Nature 373, 399404.Google Scholar
Orloci, L., 1966. Geometric models in ecology: I. The theory and application of some ordination methods. Journal of Ecology 54, 193215.Google Scholar
Payne, R., Blackford, J., 2008. Distal volcanic impacts on peatlands: palaeoecological evidence from Alaska. Quaternary Science Reviews 27, 20122030.Google Scholar
Payne, R.J., Egan, J., 2017. Using palaeoecological techniques to understand the impacts of past volcanic eruptions. Quaternary International (in press).Google Scholar
Porter, S.C., Swanson, T.W., 1998. Radiocarbon age constraints on rates of advance and retreat of the Puget Lobe of the Cordilleran Ice Sheet during the last glaciation. Quaternary Research 50, 205213.Google Scholar
Power, M.J., Whitlock, C., Bartlein, P.J., 2011. Postglacial fire, vegetation, and climate history across an elevational gradient in the Northern Rocky Mountains, USA and Canada. Quaternary Science Reviews 30, 25202533.Google Scholar
Pyne-O’Donnell, S.D., Hughes, P.D., Froese, D.G., Jensen, B.J., Kuehn, S.C., Mallon, G., Amesbury, M.J., Charman, D.J., Daley, T.J., Loader, N.J., Mauquoy, D., 2012. High-precision ultra-distal Holocene tephrochronology in North America. Quaternary Science Reviews 52, 611.Google Scholar
Rao, C., 1964. The use and interpretation of principal component analysis in applied research. Sankhyā: The Indian Journal of Statistics, Series A 26, 329358.Google Scholar
Reimer, P., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al., 2013. IntCal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Renberg, I., 1990. A procedure for preparing large sets of diatom slides from sediment cores. Journal of Paleolimnology 4, 8790.Google Scholar
Rose, W.I., Durant, A.J., 2009. Fine ash content of explosive eruptions. Journal of Volcanology and Geothermal Research 186, 3239.Google Scholar
Round, F., Crawford, R., Mann, D., 1990. The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge.Google Scholar
Saros, J.E., Anderson, N.J., 2015. The ecology of the planktonic diatom Cyclotella and its implications for global environmental change studies. Biological reviews of the Cambridge Philosophical Society 90, 522541.Google Scholar
Spaulding, S., 2014. Diatoms of the United States (accessed October 31, 2014). http://westerndiatoms.colorado.edu/.Google Scholar
Staff, R.A., Bronk Ramsey, C., Bryant, C.L., Brock, F., Payne, R.L., Schlolaut, G., Marshall, M.H., et al., 2011. New 14C determinations from Lake Suigetsu, Japan: 12,000 to 0 cal BP. Radiocarbon 53, 511528.Google Scholar
Stoermer, E.F., Emmert, G., Julius, M.L., Schelske, C.L., 1996. Paleolimnologic evidence of rapid recent change in Lake Erie’s trophic status. Canadian Journal of Fisheries and Aquatic Sciences 53, 14511458.Google Scholar
Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S., Guiot, J., et al., 2015. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nature Geoscience 8, 784788.Google Scholar
Stone, J.R., 2005. A High-Resolution Record of Holocene Drought Variability and the Diatom Stratigraphy of Foy Lake, Montana. PhD Thesis, University of Nebraska, Lincoln.Google Scholar
Telford, R., Barker, P., Metcalfe, S., Newton, A., 2004. Lacustrine responses to tephra deposition: examples from Mexico. Quaternary Science Reviews 23, 23372353.Google Scholar
ter Braak, C., Prentice, I., 1988. A Theory of Gradient Analysis. Academic Press Inc, London.Google Scholar
ter Braak, C., Šmilauer, P., 2012. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0. Microcomputer Power, Ithaca.Google Scholar
Thwaites, G.H.K., 1848. XVI—Further observations on the Diatomaceæ; with descriptions of new genera and species. Journal of Natural History Series 2 1, 161172.Google Scholar
Zdanowicz, C.M., Zielinski, G.A., Germani, M.S., 1999. Mount Mazama eruption: calendrical age verified and atmospheric impact assessed. Geology 27, 621624.Google Scholar
Zielinski, G.A., 2000. Use of paleo-records in determining variability within the volcanism–climate system. Quaternary Science Reviews 19, 417438.Google Scholar
Supplementary material: File

Egan et al. supplementary material

Egan et al. supplementary material 1

Download Egan et al. supplementary material(File)
File 59.3 KB