Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T02:00:03.215Z Has data issue: false hasContentIssue false

Development of Quaternary travertines in the carbonate mountains of the western Costa del Sol, Málaga, southern Spain

Published online by Cambridge University Press:  14 March 2019

Antonio Guerra-Merchán*
Affiliation:
Departamento de Ecología y Geología, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, España
Francisco Serrano
Affiliation:
Departamento de Ecología y Geología, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, España
José M. García-Aguilar
Affiliation:
Departamento de Ecología y Geología, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, España
José E. Ortiz
Affiliation:
Laboratorio de Estratigrafía Biomolecular, Escuela Técnica Superior de Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, España
Trinidad Torres
Affiliation:
Laboratorio de Estratigrafía Biomolecular, Escuela Técnica Superior de Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, España
Yolanda Sánchez-Palencia
Affiliation:
Laboratorio de Estratigrafía Biomolecular, Escuela Técnica Superior de Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, España
*
*Corresponding author e-mail address: [email protected]

Abstract

The predominantly carbonate nature of the mountains near the coast of Málaga and Marbella (Costa del Sol, southern Spain) and the presence of springs have favored the formation of travertine buildups during the Quaternary. The geomorphic characteristics of the slopes and the location of the springs have determined the development of three types of travertine growths: (1) spring travertines, located preferentially on the south mountainside, where the slope is steepest; (2) pool-dam-cascade travertines, which form along the north and east edges, far from the carbonate relief and with a gentler slope; and (3) river-valley travertines, formed in the courses of the springs of any sector. Field observations combined with new amino acid racemization (AAR) dating of Helicidae gastropods show that most of the travertine formations are polyphasic and that their development was interrupted by stages of erosion and incision. Five stages of travertine development are evident, most of which are related to warm, moist episodes corresponding to marine oxygen isotope stages (MIS) 7, 5, 3, and 1, although local travertine growth also occurred during MIS 6 and during the transition from MIS 3 to 2.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreo, B., 1997. Hidrogeología de acuíferos carbonatados en las Sierras Blanca y Mijas (Cordillera Bética, Sur de España). Servicio de Publicaciones de la Universidad de Málaga, Málaga.Google Scholar
Andreo, B., Sanz de Galdeano, C., 1994. Structure of the Sierra de Mijas (Alpujarride Complex, Betic Cordillera). Annales Tectonicae 8, 2335.Google Scholar
Bates, R.L., Jackson, J.A., 1987. Glossary of Geology. 3rd ed. American Geological Institute, Alexandria, VA.Google Scholar
Bragado, M.D., Araujo, R., Aparicio, M.T., 2009. Atlas y libro rojo de los moluscos de Castilla-La Mancha. Organismo Autónomo de Espacios Naturales de Castilla-La Mancha, Guadalajara.Google Scholar
Chen, D., Chen, H.W., 2013. Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environmental Development 6, 6979.Google Scholar
Clark, I.A., Fontes, J.Ch., 1990. Paleoclimatic Reconstruction in Northern Oman Based on Carbonates from Hyperalkaline Groundwaters. Quaternary Research 33, 320336.Google Scholar
Clark, I.D., Khoury, H.N., Salameh, E., Fritz, P., Göksu, H.Y., Wiesser, A., Fontes, J.Ch., Causse, C., 1991. Travertines in Central Jordan: implications for palaeohydrology and dating. Proceedings of the International Atomic Energy Agency Symposium SM-319. The Use of Isotope Techniques in Water Resources Development. Vienna, Austria, March 11–15, 1991.Google Scholar
Delgado Castilla, L., 2009. Edades U/Th de los travertinos del cuaternario reciente de la Cuenca de Tabernas, Almería: implicaciones en su evolución geodinámica y paleoambiental. Cuaternario y Geomorfología 23, 6576.Google Scholar
Durán, J.J., 1996. Los sistemas kársticos de la provincia de Málaga y su evolución: contribución al conocimiento paleoclimático del Cuaternario en el Mediterráneo occidental. PhD dissertation, Complutense University of Madrid, Spain.Google Scholar
Durán, J.J., Grün, R., Soria, J., 1988. Edad de las formaciones travertinas del flanco meridional de la Sierra de Mijas (provincia de Málaga, Cordilleras Béticas). Geogaceta 5, 6163.Google Scholar
Durán, J.J., Carrasco, F., Andreo, B., Marqués, I., Baldomero, A., Ferrer, I.E., Cortés, M., 2002. Aspectos cronoestratigráficos de los travertinos de Torremolinos (Málaga, Sur de España), a partir de nuevos datos del yacimiento arqueológico del Bajondillo. In: Carrasco, F., Durán, J.J., Andreo, B. (Eds.), Karst and Environment. Fundación Cueva de Nerja, Málaga, pp. 465470.Google Scholar
Eikenberg, J., Vezzu, G., Zumsteg, I., Bajo, S., Ruethi, M., Wyssling, G., 2001. Precise two chronometer dating of Pleistocene travertine: the 230Th/234U and 226Ra/226Ra (0) approach. Quaternary Science Reviews 20, 19351953.Google Scholar
Engin, B., Güven, O., 1997. Thermoluminescence dating of Denizli travertines from the southwestern part of Turkey. Applied Radiation and Isotopes 48, 12571264.Google Scholar
Ford, T.D., Pedley, H.M., 1992. Tufa deposits of the world. Journal of the Speleological Society of Japan 17, 4663.Google Scholar
Ford, T.D., Pedley, H.M., 1996. A review of tufa deposits of the world. Earth-Science Reviews 41, 117175.Google Scholar
Frank, N., Braum, F.N., Hambach, M., Mangini, A., Wagner, G., 2000. Warm period growth of travertine during the last interglaciation in southern Germany. Quaternary Research 54, 3848.Google Scholar
García del Cura, M.A., González, J.A., Ordóñez, S., Pedley, M., 1996. Las Lagunas de Ruidera. In: García, J.L., González, E. (Eds.), Elementos del Medio Natural en la provincia de Ciudad Real, Universidad de Castilla-La Mancha, pp. 84129.Google Scholar
García-García, F., Nieto, L.M., 2005. El sistema aluvio-travertínico de Frailes (Cuenca Neógeno-Cuaternaria de Alcalá la Real, provincia de Jaén, Cordillera Bética). Geogaceta 37, 7578.Google Scholar
González Martín, J.A., González Amuchastegui, M.J., 2014. Las Tobas en España. Sociedad Española de Geomorfología, Badajoz, España.Google Scholar
Goodfriend, G.A., 1991. Patterns of racemization and epimerization of amino acids in land snail shells over the course of the Holocene. Geochimica et Cosmochimica Acta 55, 293302.Google Scholar
Goodfriend, G.A., Meyer, V., 1991. A comparative study of the kinetics of amino acid racemization/epimerization in fossil and modern mollusc shells. Geochimica et Cosmochimica Acta 55, 33553367.Google Scholar
Grün, R., Schwarcz, H.P., Ford, D.C., Hentzsch, B., 1988. ESR dating of spring deposited travertine. Quaternary Science Reviews 7, 429432.Google Scholar
Guerra-Merchán, A., Serrano, F., Ramallo, D., 2000. El Plioceno de la Cuenca de Málaga (Cordillera Bética). Geotemas 1, 108110.Google Scholar
Guerra-Merchán, A., Serrano, F., Hlila, R., Kadiri, K., Sanz de Galdeano, C., Garcés, M., 2014. Tectono-sedimentary evolution of the peripheral basins of the Alboran Sea in the arc of Gibraltar during the latest Messinian-Pliocene. Journal of Geodynamics 77, 158170.Google Scholar
Guerra-Merchán, A., Serrano, F., García-Aguilar, J.M., Sanz de Galdeano, C., Ortiz, J.E., Torres, T., Sánchez-Palencia, Y., 2018. The Late Cenozoic landscape development in the westernmost Mediterranean (southern Spain). Geomorphology https://doi.org/10.1016/j.geomorph.2018.11.008.Google Scholar
Hearty, P.J., O'Leary, M.J., Kaufman, D.S., Page, M.C., Bright, J., 2004. Amino acid geochronology of individual foraminifer (Pulleniatina obliquiloculata) tests, north Queenland margin, Australia: a new approach to correlating and dating Quaternary tropical marine sediment cores. Paleoceanography 19, PA4022.Google Scholar
Hennig, G.J., Grünn, R., Brunnacker, K., 1983. Speleothems, travertines, and paleoclimates. Quaternary Research 20, 129.Google Scholar
Hillarie-Marcel, C., Carro, O., Casanova, J., 1986. 14C and Th/U dating of Pleistocene and Holocene stromatolites from East African paleolakes. Quaternary Research 25, 312329.Google Scholar
Hubbard, D.A., Herman, J.S., 1990. Overview of travertine-marl volumen. In: Herman, J.S. and Hubbard, D.A. (Eds.), Travertine-marl: stream deposits in Virginia. Virginia Division of Mineral Resources Publication 101:1–4.Google Scholar
Insua-Arévalo, J.M., 2008. Neotectónica y Tectónica Activa de la Cuenca de Málaga (Cordillera Bética Occidental). PhD dissertation, Universidad Complutense de Madrid, Spain.Google Scholar
Insua-Arévalo, J.M., Martínez-Díaz, J.J., García-Mayordomo, J., Martín-García, F., Capote, R., 2007. Los abanicos aluviales del borde norte de la Sierra de Mijas (Cuenca de Málaga, Cordillera Bética occidental). XII Reunión Nacional de Cuaternario, Ávila, pp. 151152.Google Scholar
Insua-Arévalo, J.M., Martínez-Díaz, J.J., García-Mayordomo, J., Martín-González, F., 2012. Active tectonics in the Málaga Basin: evidences from morphotectonic markers (western Betic Cordillera, Spain). Journal of Iberian Geology 38, 175190.Google Scholar
Juliá, R., 1983. Travertines. In: Scholle, P.A., Bebout, D.G., Moore, C.H. (Eds.), Carbonate Depositional Environments. American Association of Petroleum Geologists Memoir 33, 6272.Google Scholar
Kaufman, D.S., 2000. Amino acid racemization in ostracodes. In: Goodfriend, G., Collins, M., Fogel, M., Macko, S., Wehmiller, J. (Eds.), Perspectives in Amino Acid and Protein Geochemistry. Oxford University Press, New York, pp. 145160.Google Scholar
Kaufman, D.S., 2003. Amino acid paleothermometry of Quaternary ostracodes from the Bonneville Basin, Utah. Quaternary Science Reviews 22, 899914.Google Scholar
Kaufman, D.S., 2006. Temperature sensitivity of aspartic and glutamic acid racemization in the foraminifera Pulleniatina. Quaternary Geochronology 1, 188207.Google Scholar
Kaufman, D.S., Manley, W.F., 1998. A new procedure for determining DL amino acid ratios in fossils using reverse phase liquid chromatography. Quaternary Geochronology 17, 9871000.Google Scholar
Koban, C.G., Schweigert, G., 1993. Microbial origin of travertine fabrics: two examples from southern Germany (Pleistocene Stuttgart travertine and Miocene Riodöschingen travertine). Facies 29, 251264.Google Scholar
Kosnik, M.A., Kaufman, D.S., 2008. Identifying outliers and assessing the accuracy of amino acid racemization measurements for geochronology: II. Data screening. Quaternary Geochronology 3, 328341.Google Scholar
Kronfeld, J., Vogel, J.C., Rosenthal, E., Weinstein-Evron, M., 1988. Age and paleoclimatic implications of Bet Shean travertines. Quaternary Research 30, 298303.Google Scholar
Laabs, B.J.C., Kaufman, D.S., 2003. Quaternary highstands in Bear Lake Valley, Utah and Idaho. Geological Society of America Bulletin 115, 463478.Google Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003, 117.Google Scholar
Magnin, F., Guendon, J.L., Vaudour, J., Martin, Ph., 1991. Les travertins: accumulations carbonatées associées aux systémes karstiques, séquences sédimentaires et paléo-environnements quaternaires. Bulletin Société Géologique de France 162, 585594.Google Scholar
Martín-Algarra, A., Martín-Martín, M., Andreo, B., Julià, R., González-Gómez, C., 2003. Sedimentary patterns in perched spring travertines near Granada (Spain) as indicators of the paleohydrological and paleoclimatological evolution of a karst massif. Sedimentary Geology 161, 217228.Google Scholar
Martínez-Tudela, A., Cuenca, F., Santisteban, C., Grun, R., Hentzsch, B., 1986. Los travertinos del Rio Matarraña, Beceite (Teruel) como indicadores paleoclimáticos del Cuaternario. In: López-Vera, A. (Ed.), Quaternary Climate in Western Mediterranean, pp. 307324.Google Scholar
Mollat, H., 1968. Schichtenfolge un tektonisher Bau der Sierra Blanca und ihrer Umgebung (Betische Kordilleren, Südspanien). Geologisches Jahrbuch 86, 471521.Google Scholar
Murray-Wallace, C.V., 1995. Aminostratigraphy of Quaternary coastal sequences in southern Australia: an overview. Quaternary International 26, 6986.Google Scholar
Ordóñez, S., González, J.A., García del Cura, M.A., 1990. Datación radiogénica (U-234/U-238 y Th-230/U-234) de sistemas travertínicos del Alto Tajo (Guadalajara). Geogaceta 8, 5356.Google Scholar
Ortiz, J.E., Torres, T., Delgado, A., Reyes, E., Díaz-Bautista, A., 2009. A review of the Tagus river tufa deposits (central Spain): age and palaeoenvironmental record. Quaternary Science Reviews 28, 947963.Google Scholar
Ortiz, J.E., Torres, T., Pérez-González, A., 2013. Amino acid racemization in four species of ostracodes: taxonomic, environmental, and microstructural controls. Quaternary Geochronology 16, 129143.Google Scholar
Pedley, H.M., 1990. Classification and environmental models of cool freshwater tufas. Sedimentary Geology 68, 143154.Google Scholar
Penkman, K.E.H., Preece, R.C., Keen, D.H., Maddy, D., Schreve, D.S., Collins, M.J., 2007. Testing the aminostratigraphy of fluvial archives: the evidence from intra-crystalline proteins within freshwater shells. Quaternary Science Reviews 26, 29582969.Google Scholar
Penkman, K.E.H., Kaufman, D.S., Maddy, D., Collins, M.J., 2008. Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusk shells. Quaternary Geochronology 3, 225.Google Scholar
Pentecost, A., 1993. British travertines: a review. Proceedings of the Geologists Association 104, 2339.Google Scholar
Pentecost, A., 1995. The Quaternary travertine deposits of Europe and Asia Minor. Quaternary Science Reviews 14, 10051028.Google Scholar
Pentecost, A., 2005. Travertine. Springer-Verlag, Berlin and Heidelberg, Germany.Google Scholar
Pentecost, A., Viles, H.A., 1994. A review and reassessment of travertine classification. Géographie Physique et Quaternaire 48, 305314.Google Scholar
Peña, J.L., Sancho, C., Lozano, M.V., 2000. Climatic and tectonic significance of Late Pleistocene and Holocene tufa deposits in the Mijares river canyon, eastern Iberian range, northeast Spain. Earth Surface Processes and Landforms 25, 14031417.Google Scholar
Piles Mateo, E., Estévez González, C., Barba Martín, A., 1978. Hoja y memoria explicativa de la Hoja de Coín-1066 del Mapa Geológico de España a escala 1:50.000. Instituto Geológico y Minero de España, Madrid.Google Scholar
Reddmann, Th., Schüttlekopf, H., 1986. Thermoluminescence dating of Pleistocene travertine. Radiation Protection Dosimetry 17, 14.Google Scholar
Riding, R., 1991. Classification of microbial carbonates. In: Riding, R. (Ed.), Calcareous Algae and Stromatolites. Springer-Verlag, Berlin, pp. 2151.Google Scholar
Rivas-Martínez, S., Rivas-Sáenz, S., 2009. Worldwide Bioclimatic Classification System (accessed April 15, 2018). www.globalbioclimatics.org.Google Scholar
Rodrigo Comino, J., Senciales González, J.M., 2012. Las plataformas travertínicas y tobáceas de la provincia de Málaga (España). Baetica. Estudios de Arte, Geografía e Historia 34, 83102.Google Scholar
Rodríguez-Vidal, J., Abad, M., Cáceres, L.M., González-Regalado, M.L., Lozano-Francisco, M.C., Ruiz, F., Vera-Peláez, J.L., Cortés Sánchez, M., de la Rubia de Gracia, J.J., Simón Vallejo, M.D., 2007. Rasgos morfosedimentarios del piedemonte nororiental de la Sierra de Mijas (Torremolinos, Málaga). In: Cortés Ramos, M. (Ed.), Cueva Bajoncillo (Torremolinos). Secuencia cronocultural y paleoambiental del Cuaternario reciente en la Bahía de Málaga. Servicio de Publicaciones del Centro de Ediciones de la Diputación de Málaga, Málaga, pp. 2535.Google Scholar
Rubel, F., Kottek, M., 2010. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift 19, 135141.Google Scholar
Sánchez-Goñi, M.F., Eynaud, F., Turon, J.L., Shackleton, N.J., 1999. High resolution palynological record off the Iberian margin: direct land-sea correlation for the last interglacial complex. Earth and Planetary Science Letters 171, 123137.Google Scholar
Sánchez-Goñi, M.F., Cacho, I., Turon, J.L., Guiot, J., Sierro, F.J., Peypouquet, J.P., Grimalt, J., Shackleton, N.J., 2002. Synchroneity between marine and terrestrial responses to millenial scale climatic variability during the last glacial period in the Mediterranean region. Climate Dynamics 19, 95105.Google Scholar
Sánchez-Goñi, M.F., Landais, A., Fletcher, W.J., Naughton, F., Desprat, S., Duprat, J., 2008. Contrasting impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews 27, 11361151.Google Scholar
Sanz de Galdeano, C., 1997. La Zona Interna Bético-Rifeña: antecedentes, unidades tectónicas, correlaciones y bosquejo de reconstrucción paleogeográfica. Monográfica Tierras del Sur. Universidad de Granada, Granada.Google Scholar
Sanz de Galdeano, C., López Garrido, A.C., 1991. Tectonic evolution of the Málaga Basin (Betic Cordillera). Regional implications. Geodinamica Acta 5, 173186.Google Scholar
Soligo, M., Tuccimei, P., Barberi, R., Delitala, M.C., Miccadei, E., Taddeucci, A., 2002. U/Th dating of freshwater travertine from Middle Velino Valley (Central Italy): paleoclimatic and geological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 184, 147161.Google Scholar
Srdoč, D., Horvatinčić, N., Obelić, B., Sliepčević, A., 1983. Radiocarbon dating of tufa in paleoclimatic studies. Radiocarbon 25, 421428.Google Scholar
Torres, T., Llamas, J., Canoira, L., García-Alonso, P., García-Cortés, A., Mansilla, H., 1995. Amino chronology of the lower Pleistocene deposits of Venta Micena, Orce, Granada. In: Grimalt, J. O., Dorronsoro, C. (Eds.), Organic Geochemistry: Developments and Applications to Energy, Climate, Environment and Human History. ALAGO, San Sebastián, pp. 722724.Google Scholar
Torres, T., Cobo, R., Canoira, L., García Cortés, A., Grün, R., Hoyos, M., Juliá, R., et al. , 1996. Aportaciones al conocimiento de la evolución paleoclimática y paleoambiental en la península Ibérica durante los dos últimos millones de años a partir del estudio de travertinos y espeleotemas. Empresa Nacional de Residuos Radioactivos, S.A., Publicación técnica 3/96. 118 pp.Google Scholar
Torres, T., Llamas, J., Canoira, L., García-Alonso, P., García-Cortés, A., Mansilla, H., 1997. Amino acid chronology of the lower Pleistocene deposits of Venta Micena (Orce, Granada, Andalusia, Spain). Organic Geochemistry 26, 8597.Google Scholar
Torres, T., Llamas, J., Canoira, L., García-Alonso, P., Ortiz, J.E., 1999. Estratigrafía Biomolecular. La racemización/epimerización de aminoácidos como herramienta geocronológica y paleotermométrica. ENRESA, Madrid.Google Scholar
Torres, T., Ortiz, J.E., García de la Morena, M.A., Llamas, F.J., Goodfriend, G., 2005. Aminostratigraphy and aminochronology of a tufa system in central Spain. Quaternary International 135, 2133.Google Scholar
Tubía, J.M., 1985. Estructura de los Alpujárrides occidentales: cinemática y condiciones de emplazamiento de las peridotitas de Ronda. PhD dissertation, Universidad del País Vasco, España.Google Scholar
Whitten, D.A., Brooks, J.V.R., 1972. The Penguin Dictionary of Geology. Penguin, London.Google Scholar
Supplementary material: File

Guerra-Merchán et al. supplementary material

Guerra-Merchán et al. supplementary material 1

Download Guerra-Merchán et al. supplementary material(File)
File 44.5 KB