Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T16:38:51.112Z Has data issue: false hasContentIssue false

Deriving Response Matrices from Central American Modern Pollen Rain

Published online by Cambridge University Press:  20 January 2017

Mark B. Bush*
Affiliation:
Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901

Abstract

Modern pollen samples collected from 80 locations and representing a wide array of mature habitats in Panama and Costa Rica provide analogs to assist in the interpretation of fossil pollen records. Pollen spectra accurately reflect changes in actual forest types. Upslope transport of pollen of anemophilous species is evident in the sparsely vegetated montane samples. However, the corresponding downslope transport of these prolific pollen producers is masked by local pollen production. Mean pollen representation across gradients of mean annual temperature (MAT; 4°C increments) and mean annual precipitation (MAP; 500 mm increments) for 17 pollen types are presented as response matrices. Although preliminary in nature, these response matrices present a clearer image of pollen representation than can be obtained by considering gradients of MAT or MAP alone.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartlein, P.J., Prentice, I.C., Webb, T. III (1986). Climatic response surfaces from pollen data for some eastern North American taxa. Journal of Biogeography,13, 3557., CrossRefGoogle Scholar
Bartlett, A.S., Barghoorn, E.S.. Phytogeographic history of the Isthmus of Panama during the past 12,000 years: A history of vegetation, climate, and sea-level change. Graham, A. (1973). Vegetation and Vegetational History of Northern Latin America. Elsevier, Amsterdam.203299., Google Scholar
Birks, H.J.B., Birks, H.H. (1980). Quaternary Palaeoecology. University Park Press, Baltimore.Google Scholar
Boucher, D.H.. Quercus oleoides . Janzen, D.H. (1983). Costa Rican Natural History. Univ. of Chicago Press, Chicago.319320., Google Scholar
Bush, M.B. (1991). Modern pollen-rain data from South and Central America: A test of the feasibility of fine-resolution lowland tropical palynology. Holocene,1, 162167., CrossRefGoogle Scholar
Bush, M.B. (1992). A simple yet efficient pollen trap for use in vegetation studies. Journal of Vegetation Science,3, 275276., CrossRefGoogle Scholar
Bush, M.B., Colinvaux, P.A. (1988). A 7000-year pollen record from the Amazon lowlands, Ecuador. Vegetatio,76, 141154., CrossRefGoogle Scholar
Bush, M.B., Colinvaux, P.A. (1990). A long climatic and vegetation record from lowland Panama. Journal of Vegetation Science,1, 105118., CrossRefGoogle Scholar
Bush, M.B., Rivera, R.S. (1998). Pollen dispersal and representation in a neotropical forest. Global Ecology and Biogeography Letters,7, 7892., Google Scholar
Coen, E.. Climate. Janzen, D.H. (1983). Costa Rican Natural History. Univ. Chicago Press, Chicago.3546., Google Scholar
Croat, T.B. (1978). The Flora of Barro Colorado Island. Stanford Univ. Press, Stanford.Google Scholar
Davis, M.B.. (1975). Quaternary history and the stability of forest communities. West, D.C., Shugart, H.H., Botkin, D.B. (1981). Forest Succession: Concepts and Application. Springer-Verlag, New York.132154., Google Scholar
Estadistica, Panameña,. Situacı́on Fisica, Meteorologia: Año 1975. Contraloria General de la Republica,Direccion de Estadistica y Censo, Panama City, Panama.Google Scholar
Faegri, K., Iversen, J. (1989). Textbook of Pollen Analysis. Wiley, Chichester.Google Scholar
Gentry, A.H. (1977). Botanical exploration of Cerro Tacarcuna. Explorer's Journal,55, 4045., Google Scholar
Gentry, A.H.. Contrasting phytogeographic patterns of upland and lowland Panamanian plants. D'Arcy, W.G., A., M.D.Correa (1985). The Botany and Natural History of Panama. Missouri Botanical Garden, St. Louis.147160., Google Scholar
Graham, D., Patterson, B.D. (1982). Responses of plants to low, nonfreezing temperatures: Proteins, metabolism and acclimation. Annual Review of Plant Physiology,33, 347372., Google Scholar
Grimm, E.. (1992). TILIA Software. Version 1.12,Illinois State Museum, .Google Scholar
Haber, W.A. (1991). Lista provisional de las plantas de Monteverde, Costa Rica. Brenesia,34, 63120., Google Scholar
Hansen, B.C.S., Wright, H.E. Jr., Bradbury, J.P. (1984). Pollen studies in the Junı́n area, Central Peruvian Andes. Geological Society of America Bulletin,95, 14541465., Google Scholar
Hartshorn, G.S.. Plants. Janzen, D.H. (1983). Costa Rican Natural History. Univ. of Chicago Press, Chicago.118157., Google Scholar
Heine, K. (1994). The Mera site revisited: Ice-age Amazon in the light of new evidence. Quaternary International,21, 113119., Google Scholar
Hill, M. O. (1979). DECORANA—A FORTRAN program for detrended correspondence analysis and reciprocal averaging. Ecology and Systematics,Cornell University, NY.Google Scholar
Horn, S.P. (1993). Postglacial vegetation and fire history in the Chirripó páramo of Costa Rica. Quaternary Research,40, 107116., CrossRefGoogle Scholar
Horn, S.P., Rodgers, J.C. III (1997). The northern limit of Alnus (Fagales) in Costa Rica: Modern pollen evidence of a possible range extension. Review of Tropical Biology,44/45, 609611., Google Scholar
Huntley, B., Bartlein, P.J., Prentice, I.C. (1989). Climatic control of the distribution and abundance of beech (Fagus L.) in Europe and North America. Journal of Biogeography,16, 551560., CrossRefGoogle Scholar
Islebe, G.A., Hooghiemstra, H. (1997). Vegetation and climate history of montane Costa Rica since the last glacial. Quaternary Science Reviews,16, 589604., CrossRefGoogle Scholar
Kappelle, M. (1991). Distribucı́on alitudinal de la vegetacı́on del Parque Chirripó, Costa Rica. Brenesia,36, 114., Google Scholar
Lyons, J.M. (1973). Chilling injury in plants. Annual Review of Plant Physiology,24, 445466., CrossRefGoogle Scholar
McCune, B Mefford, M. J., (1999). PC_ORD. Multivariate Analysis of Ecological Data. MJM Software Design,Gleneden Beach, OR.Google Scholar
Palacios, C.R. (1985). Lluvia de polen moderno en el bosque tropical caudicifolia de la Estación de Biologı́a de Chamela, Jal. (México). Annales Escolares Ciencias Biologicas,29, 4355., Google Scholar
Paton, S., (1994). Meteorological and hydrological summary for Barro Colorado Island,unpublished, .Google Scholar
Prentice, I.C., Bartlein, P.J., Webb, T. III (1991). Vegetation and climate change in eastern North America since the last glacial maximum. Ecology,72, 20382056., Google Scholar
Rodgers, J.C. III, Horn, S.P. (1996). Modern pollen spectra from Costa Rica. Palaeogeography, Plaeoclimatology and Palaeoecology,124, 5371., Google Scholar
Roubik, D.W., Moreno, P.J.E. (1991). Pollen and Spores of Barro Colorado Island. Missouri Botanical Garden, Google Scholar
Schulz, J.P. (1960). Ecological studies on the rain forest in northern Surinam. North Holland, Amsterdam.Google Scholar
Shugita, S. (1994). Pollen representation of vegetation in Quaternary sediments theory and method in patchy vegetation. Journal of Ecology,82, 881897., Google Scholar
Spear, R.W., Davis, M.B., Shane, L.C.K. (1994). Late Quaternary history of low- and mid-elevation vegetation in the White Mountains of New Hampshire. Ecological Monographs,64, 85109., Google Scholar
Tosi, J.A.. Una base ecologica para investigaciones silvicolas e inventariacion forestal en la Republica de Panama. (1971). Inventariacion y Demonstraciones Forestales: Panama. Technical Report to the Food and Agricultural Organization of the United Nations, Rome.p. 22–71Google Scholar