Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-21T21:56:15.279Z Has data issue: false hasContentIssue false

Deposition of Organic Matter in the Norwegian-Greenland Sea during the Past 2.7 Million Years

Published online by Cambridge University Press:  20 January 2017

T. Wagner
Affiliation:
Universität Bremen, Fachbereich 5-Geowissenschaften, Klagenfurter Strasse, 28359 Bremen, Germany
J.A. Hölemann
Affiliation:
GEOMAR, Forschungszentrum für marine Geowissenschaften, Wischhofstrasse 1-3, 24148 Kiel, Germany

Abstract

Variations in the amount and composition of sedimentary organic matter in glacial and interglacial deposits of the last 2.7 myr correlate with late Cenozoic climatic and oceanographic changes in the Norwegian-Greenland Sea. These variations are predominantly caused by the changing supply of terrestrial and reworked organic matter. The highest amounts of terrestrial organic particles (macerals) and of reworked coal clasts in glacial and early deglacial diamictons are closely related to glacial erosion of Mesozoic strata that crop out along the Scandinavian Shelf. The first occurrence of coal clasts at 2.53 myr demonstrates an initial advance of continental ice margins to these source areas. The establishment of anoxic conditions at the sea floor during diamicton deposition probably reflects an increased vertical flux of labile organic matter due to lithogenic adsorbtion followed by an almost complete mineralization at the water/sediment interface. The content of marine organic matter was continuously low over the past 2.7 myr except for past interglacial highstands (i.e., isotopic event 5.5.1), suggesting persistent diagenetic degradation of the labile organic fraction. The marine organic matter exclusively consists of residual dinoflagellate cysts and fragments of them.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, J.T. Tedesco, K., and Jennings, A. E. (1993). Heinrich events: Chronology and processes, east-central Laurentide Ice Sheet and NW Labrador Sea. In “Ice in the Climate System” (Peltier, W. R., Ed.), pp. 167186. Springer-Verlag, Heidelberg/Berlin.CrossRefGoogle Scholar
Baumann, K. H. (1990). Veränderlichkeit der Coccolithophoridenflora des Europäischen Nordmeres in Jungquartär. Berichte Sonderforschungsbereich 313 , Universität Kiel 22, 1146.Google Scholar
Baumann, K.-H. Lackschewitz, K. S. Mangerud, J. Spielhagen, R. F. Wolf-Welling, T. C. Henrich, R., and Kassens, H. (1995). Reflection of Scandinavian Ice Sheet fluctuations in Norwegian Sea sediments during the past 150,000 years. Quaternary Research 43 , 185197.Google Scholar
Berger, W. H. Smetacek, V. S., and Wefer, G. (1989). Ocean productivity and paleoproductivity—An overview, in “Productivity of the Ocean—Present and Past” (Berger, W. H. et al., Eds.), pp. 134. Wiley, New York.Google Scholar
Berger, W. H., and Herguera, J. C. (1992). Reading the sedimentary record of the ocean’s productivity. In “Primary Productivity and Biogeochemical Cycles in the Sea” (Falkowski, P. G. and Woodhead, A. D., Eds.), pp. 455486. Plenum, New York.CrossRefGoogle Scholar
Bischof, J. Koch, J. Kubisch, M. Spielhagen, R. F., and Thiede, J. (1991). Nordic Sea surface ice drift reconstructions: Evidence from ice rafted coal fragments during oxygen isotope stage 6. In “Glacimarine Environments: Processes and Sediments” (Dowdeswell, J. A. and Scourse, J. D., Eds.), Geol. Soc. Spec. Publ. No 53, pp. 235251. Geological Society London.Google Scholar
Bleil, U. (1989). Magnetostratigraphy of Neogene and Quaternary sediment series from the Norwegian Sea: Ocean Drilling Program, Leg 104, In “Proceedings, ODP, Science Results, 104” (Eldholm, O. et al.). pp. 829902. College Station, TX.Google Scholar
Botz, R. Erlenkeuser, H. Koch, J., and Wehner, H. (1991). Analysis of sedimentary organic matter of a glacial/interglacial change (Oxygen Isotope Stage 6/5) in the Norwegian-Greenland Sea. Marine Geology 98 , 113119.Google Scholar
Bruland, K. W. Bienfang, P. K. Bishop, J. K. B., Eglinton, G. Ittekot, V. A. W., Lampitt, R. Samthein, M. Thiede, J. Walsh, J. J., and Wefer, G. (1989). Group report: Flux to the Ocean. In “Productivity of the Ocean—Present and Past” (Berger, W. H. et at., Eds.), pp. 193215. Wiley, New York.Google Scholar
Bubnoff von, S. (1952). “Fennosarmatia. Geologische Analyse des europäischen Kerngebietes.” Akademie-Verlag, Berlin.Google Scholar
Bugge, T. Knarud, R., and Mørk, A. (1984). Bedrock geology on the mid-Norwegian continental shelf. In “Petroleum Geology of the North European Margin,” Norwegian Petroleum Society, pp. 271283. Graham and Trotman, London.CrossRefGoogle Scholar
Cook, H. E. (1979). Ancient continental slope sequences and their value in understanding modern slope development. In “Geology of Continental Slopes” (Doyle, L. J., and Pilkey, O. H., Eds.), pp. 287305. SEPM Special Publication, Tulsa, OK.CrossRefGoogle Scholar
Combaz, A. Bellet, J. Poulain, D. Caratini, C., and Tissot, C. (1974). Étude microscopique de la matière organique de sédiments quaternaires de Mer de Norvège. In “Orgon I Merde Norvège,” pp. 139175. CNRS, Paris.Google Scholar
Dalland, A. (1981). Mesozoic sedimentary succession at Andøy, northern Norway, and relation to structural development of the North Atlantic area. Canadian Society of Petroleum Geologists Memoir 7 , 563584.Google Scholar
Emerson, S. (1985). Organic carbon preservation in marine sediments. In “The carbon cycle and atmospheric C02: Natural variations archean to present” (Sundquist, E. T. and Broecker, W. S., Eds.), pp. 7887. American Geophysical Union, Washington, DC.Google Scholar
Emerson, S., and Hedges, J. I. (1988). Processes controlling the organic carbon content of open ocean sediments. Paleoceanography 3(5), 621624.Google Scholar
Gard, G., and Backman, J. (1990). Synthesis of Arctic and Sub-Arctic coccolith biochronology and history of North Atlantic drift water influx during the last 500,000 years. In “Geological History of the Polar Oceans: Arctic Versus Antarctic” (Bleil, U. and Thiede, J., Eds.), NATO ASI Ser. C 308, pp. 417436. Kluwer Academic, Dordrecht.Google Scholar
Gerlach, S. A. Thiede, J. Graf, G., and Wemer, F. (1986). Forschungsschiff Meteor, Reise 2 vom 19. Juni bis 16. Juli 1986; Forschungsschiff Poseidon, Reise 128 vom 7. Mai bis 8. Juni 1986. Berichte Sonderforschungsbereick 313 , Universität Kiel 14, 1140.Google Scholar
Goldschmidt, P. M. (1994). The ice-rafting history in the Norwegian-Greenland Sea for the last two glacial/interglacial cycles. Berichte Sonder-forschungsbereich 313 , Universität Kiel 50, 1103.Google Scholar
Graf, G. Gerlach, S. A. Linke, P. Queisser, W. Ritzrau, W. Scheltz, A. Thomsen, L., and Witte, U. (1995). Benthic-pelagic coupling in the Green-land-Norwegian Sea and its effect on the geological record. Geologische Rundschau 84 , 4958.Google Scholar
Harland, W. B. Pickton, W. A. G., and Wright, N. J. R. (1976). Some coalbearing strata in Svalbard. Norsk Polarinstitutt Skrifter 164 , 728.Google Scholar
Hâkansson, E., and Stemmerik, L. (1984). Wandel Sea Basin—The North Greenland equivalent to Svalbard and the Barents Sea. In “Petroleum Geology of the North European Margin” (Spencer, A. M. et al. Eds.), pp. 97107. Graham and Trotman, London.CrossRefGoogle Scholar
Hebbeln, D. (1991). Spätquartäre Stratigraphie und Paläozeanographte in der Fram-Strasse. Bericht Fachbereich Geowissenschaften, Universität Bremen 22 , 1174.Google Scholar
Hebbeln, D., and Wefer, G. (1995). Late Quaternary paleoceanography in the Fram Strait. Paleoceanography, submitted.Google Scholar
Hedges, J. I. Clark, W. A., and Cowie, G. L. (1988). Organic matter sources to the water column and surficial sediments of a marine bay. Limnology Oceanography 33(5), 11161136.Google Scholar
Henrich, R. (1989). Glacial/interglacial cycles in the Norwegian Sea: Sedimentology, paleoceanography, and evolution of Late Pliocene to Quaternary northern hemisphere climate. In “Proceedings, ODP, Sei. Results 104” (Eldholm, O. et al.), pp. 189232. College Station, TX.Google Scholar
Henrich, R. Kassens, H. Vogelsang, E., and Thiede, J. (1989). Sedimentary facies of glacial-interglacial cycles in the Norwegian Sea during the last 350 ka. Marine Geology 86 , 283319.Google Scholar
Henrich, R., and Thiede, J. (1991). Sedimentary facies of glacial-interglacial cycles in the Norwegian Sea during the last 350 ka—Reply. Marine Geology 96 , 131139.Google Scholar
Henrich, R. (1992). Beckenanalyse des Europäischen Nordmeeres: Pelagische und glaziomarine Sedimentflüsse im Zeitraum 2,6 Ma bis rezent. Unpubl. Habilitation, Universität Kiel, 1315.Google Scholar
Henrich, R., and Baumann, K.-H. (1994). Evolution of the Norwegian Current and the Scandinavian ice sheets during the past 2.6 my: Evidence from ODP Leg 104 biogenic carbonate and terrigenous records. Palaeogeography, Palaeoclimatology, Palaeoecology 108 , 7594.Google Scholar
Henrich, R. Wagner, T. Goldschmidt, P., and Michels, K. (1995). Depositional regimes in the Norwegian-Greenland Sea: The last two glacial to interglacial transitions. Geologische Rundschau 84 , 2848.Google Scholar
Hölemann, J. A. (1992). Akkumulation von autochthonem und allochthonem organischen Material in den känozoischen Sedimenten der Norwegischen See (ODP Leg 104). Geomar Reports 33 , 179.Google Scholar
Hölemann, J. A., and Henrich, R. (1994). Allochthonous versus autochthonous organic matter in the Cenocoic sediments of the Norwegian Sea: Evidence for the onset of glaciations in the Northern Hemisphere. Marine Geology 121 , 87103.Google Scholar
Ittekkot, V. Haake, B. Bartsch, M. Nair, R. R., and Ramaswamy, V. (1992). Organic carbon removal in the sea: The continental connection. In “Up-welling Systems: Evolution Since the Early Miocene” (Summerhayes, C. P. et al. Eds.), pp 167176. Geological Society London, Spec. Publ. No. 64, London.Google Scholar
Jansen, E. Sjøholm, J. Bleil, U., and Erichsen, J. A. (1990). Neogene and Pleistocene glaciations in the northern hemisphere and Late Miocene-Pliocene global ice volume fluctuations: Evidence from the Norwegian Sea. In “Geological History of the Polar Oceans: Arctic versus Antarctic” (Bleil, U. and Thiede, J., Eds.), pp. 677705. Kluwer Academic, Dordrecht.Google Scholar
Jumars, P. A. Altenbach, A. V. De Lange, G. J. Emerson, S. R. Hagrave, B. T. Müller, P. J. Prahl, F. G. Reimers, C. E. Steiger, T., and Suess, E. (1989). Group Report: Transformation of seafloor-arriving fluxes into the sedimentary record. In “Productivity of the Ocean—Present and Past” (Berger, W. H. et al., Eds.), pp. 291311. Wiley, New York.Google Scholar
Kelly, R. A. (1988). Jurassic through Cretaceous stratigraphy of the Barents shelf. In “Geological Evolution of the Barents Shelf Region” (Harland, W. B. and Dowdeswell, E. K., Eds.), pp. 109130. Graham and Trotman, London.Google Scholar
King, L. H. Rokoengen, K., and Gunleiksrud, T. (1987). Quaternary seismostratigraphy of the Mid Ocean Shelf, 65°-67”30’N.—A till tongue stratigraphy. IKU Reports 114 , 158. [Trondheim] Google Scholar
Kubisch, M. (1992). Die Eisdrift im Arktischen Ozean während der letzten 250.000 Jahre. Geomar Reports 16 , 1100.Google Scholar
Langford, F.F., and Blanc-Valeron, M. M. (1990). Interpreting Rock-Eval Pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. American Association of Petroleum Geologists Bulletin 74(6), 799804.Google Scholar
Liebezeit, G., and Wiesner, M. G. (1989). Pyrolysis of recent marine sediments—1. Biopolymers. Advances in Organic Geochemistry 16 , 11791185.Google Scholar
Littke, R. (1993). Deposition, diagenesis, and weathering of organic matterrich sediments. In “Lecture Notes in Earth Sciences, No 47” (Bhatta-charji, S. et at, Eds.), pp. 0216. Springer, Berlin/Heidelberg.Google Scholar
Lund, J. J., and Pedersen, K. R. (1985). Palynology of the marine Jurassic formations in the Vardekl0ft ravine, Jameson Land, East Greenland. Bulletin of the Geological Society Denmark 33 , 371399.Google Scholar
Martinson, D. G. Pisias, N. G. Hays, J. D. Imbrie, J. Moore, T. C., and Shackleton, N. J. (1987). Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27(1), 129.Google Scholar
McDonald, T. J. Kennicut, M. C. Brooks, J. M., and Kvenvolden, K. A. (1989). Organic matter at Sites 642, 643A and 644A, ODP Leg 104. In “Proceedings, ODP, Science Results 104” (Eldholm, O. et al), pp. 309316. College Station, TX.Google Scholar
Mix, A. C. (1989). Influence of productivity variations on long-term atmospheric CO2. Nature 337 , 541544.Google Scholar
Müller, P. J. (1977). C/N ratios in Pacific deep-sea sediments: Effect on inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochimica et Cosmochimica Acta 41 , 765776.Google Scholar
Müller, P. J., and Suess, E. (1979). Productivity, sedimentation rate, and sedimentary organic matter in the oceans—I. Organic carbon preservation. Deep-Sea Research 261 , 13471362.Google Scholar
Müller, P. J. Schneider, R., and Ruhland, G. (1994). Late Quaternary pCO2 variations in the Angola Current: Evidence from organic carbon δ13C alkenone temperatures. In “Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change” (Zahn, R. et al., Eds.), pp. 343366. Springer, Berlin/Heidelberg.Google Scholar
Nam, S.-L. Stein, R. Grobe, H., and Hubberten, H. (1995). Late Quaternary glacial-interglacial changes in sediment composition at the East Greenland continental margin and their paleoceanographic implications. Marine Geology 122, 243262.Google Scholar
Pedersen, T. F. Nielsen, B., and Pickering, M. (1991). Timing of late Quaternary productivity pulses in the Panama Basin and implications for atmospheric CO2. Paleoceanography 6 , 657677.Google Scholar
Powell, A. J. Lewis, J., and Dodge, J. D. (1992). The palynological expressions of post-Paleogene upwelling: A review. In “Upwelling Systems: Evolution Since the Early Miocene” (Summerhayes, C-P. et al., Eds.), pp. 215226. Geological Society London, Special Publication No. 64, London.Google Scholar
Reimers, C. E. (1989). Control of benthic fluxes by particulate supply. In “Productivity of the Ocean—Present and Past” (Berger, W. H. et al, Eds.), pp. 217233. Wiley.Google Scholar
Romankevich, E. A. (1984). “Geochemistry of Organic Matter in the Ocean.” Springer, Berlin/Heidelberg.CrossRefGoogle Scholar
Sarnthein, M. Winn, K. Duplessy, J. C., and Fontugne, M. R. (1988). Global variations of surface ocean productivity in low and mid latitudes: Influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21.000 years. Paleoceanography 3 , 361399.Google Scholar
Senftle, J. T. Landis, C. R., and McLaughlin, R. L. (1993). Organic petrographie approach to kerogen characterisation. In “Organic Geochemistry: Principles and Applications” (Engel, M. H. and Macko, S. A., Eds.), pp. 355374. Plenum, New York.CrossRefGoogle Scholar
Shackleton, N. J. Crowhurst, S. Hagelberg, T. Pisias, N., and Schneider, D. A. (in press). A new late Neogene timescale: Application to ODP LEG 138 sites. In “Proceedings, ODP, Science Results 138.” College Station, TX.Google Scholar
Schäffer, R., and Spiegler, D. (1986). Neogene Kälteeinbrüche und Vereisungsphasasen im Nordatlantik. Z. dt. geol. Ges. 137 , 537552.Google Scholar
Spiegler, D. (1989). Ice-rafted Cretaceous and Tertiary fossils and Pleistocene-Pliocene sediments, ODP Leg 104, Norwegian Sea. In “Proceedings, ODP, Science Results 104” (Eldholm, O. et al., pp. 739744. College Station, TX.Google Scholar
Spielhagen, R. F. (1991). Die Eisdrift in der Framstrasse während der letzten 200.000 Jahre. Geomar Reports 4 , 1137.Google Scholar
Stach, E. Mackowsky, M.-T. Teichmüller, M. Taylor, G. H. Chandra, D., and Teichmüller, R. (1982). “Stach’s Textbook of Coal Petrology.” Gebrüder Bronträger, Berlin/Stuttgart.Google Scholar
Stein, R. Littke, R. Stax, R., and Welte, D. H. (1989). Quantity, provenance and maturity of organic matter at ODP-Sites 645,646, and 647: Implications for reconstruction of paleoenvironments in Baffin Bay and Labrador Sea during Tertiary times. In “Proceedings, ODP, Science Results 105” (Srivastava, S. P. et al.). pp. 185208. College Station, TX.Google Scholar
Stein, R., and Littke, R. (1990). Organic-carbon-rich sediments and paleoenvironment: Results from Baffin Bay (ODP-Leg 105) and the upwelling area off Northwest Africa (ODP-Leg 108). In “Deposition of Organic Facies” (Hue, A. Y., Ed.), AAPG Studies in Geology, pp. 4156. The American Association of Petroleum Geologists, Tulsa, OK.Google Scholar
Stein, R. Grobe, H. Hubberten, H. Marienfeld, P., and Nam, S. (1993). Latest Pleistocene to Holocene changes in glaciomarine sedimentation in Scoresby Sund and along the adjacent East Greenland Continental Margin: Preliminary results. Geo-Marine Letters 21 , 18.Google Scholar
Stein, R. Grobe, H., and Wahsner, M. (1994). Organic carbon, carbonate, and clay mineral distributions in the eastern central Arctic Ocean surface sediments. Marine Geology 119 , 269285.Google Scholar
Ttssot, B. P., and Welte, D. H. (1984). “Petroleum Formation and Occurrence.” Springer Verlag, Berlin/Heidelberg.Google Scholar
Thomsen, J. (1991). Sedimentary facies of glacial-interglacial cycles in the Norwegian Sea during the last 350 ka—Comment. Marine Geology 96 , 131139.Google Scholar
Thomsen, L. (1992). Untersuchungen zur Bodennepheloidschicht am westlichen Barents See Kontinentalhang. Bericht Sonderforschungsbereich 313, Universitat Kiel 39 , 193.Google Scholar
Vogelsang, E. (1990). Paläo-Ozeanographie des Europäischen Nordmeeres an Hand stabiler Kohlenstoff- und Sauerstoffisotope. Berichte Sonderforschungsbereich 313, Universität Kiel 23 , 1136.Google Scholar
Wagner, T. (1993). Organisches Material in pelagischen Sedimenten: Glaziale/ Interglaziale Variationen im Europäischen Nordmeer. Berichte Sonderforschungsbereich 313, Universität Kiel 42 , 1138.Google Scholar
Wagner, T., and Henrich, R. (1994). Organo-and lithofacies of glacial/ interglacial deposits of the Norwegian-Greenland Sea: Responses to paleoceanographic and paleoclimatic changes. Marine Geology 120 , 335364.Google Scholar
Wiesner, M. G. Haake, B., and Wirth, H. (1990). Organic facies of surface sediments in the North Sea. Organic Geochemistry 15 , 419432.Google Scholar
Wolf, T. C. W., and Thiede, J. (1991). History of terrigenous sedimentation during the past 10 my in the North Atlantic (ODP Legs 104, 105 and DSDP Leg 81). Marine Geology, 101 , 83102.Google Scholar