Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T14:33:57.915Z Has data issue: false hasContentIssue false

The deglacial history of NW Alexander Island, Antarctica, from surface exposure dating

Published online by Cambridge University Press:  20 January 2017

Joanne S. Johnson*
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
Jeremy D. Everest
Affiliation:
British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA, UK
Philip T. Leat
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
Nicholas R. Golledge
Affiliation:
British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA, UK Antarctic Research Centre, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand
Dylan H. Rood
Affiliation:
Lawrence Livermore National Laboratory, Center for Accelerator Mass Spectrometry, 7000 East Avenue, Livermore, CA 94550-9234, USA
Finlay M. Stuart
Affiliation:
Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride G75 0QF, UK
*
*Corresponding author. Fax: + 44 1223 362616. E-mail address:[email protected] (J.S. Johnson).

Abstract

Recent changes along the margins of the Antarctic Peninsula, such as the collapse of the Wilkins Ice Shelf, have highlighted the effects of climatic warming on the Antarctic Peninsula Ice Sheet (APIS). However, such changes must be viewed in a long-term (millennial-scale) context if we are to understand their significance for future stability of the Antarctic ice sheets. To address this, we present nine new cosmogenic 10Be exposure ages from sites on NW Alexander Island and Rothschild Island (adjacent to the Wilkins Ice Shelf) that provide constraints on the timing of thinning of the Alexander Island ice cap since the last glacial maximum. All but one of the 10Be ages are in the range 10.2–21.7 ka, showing a general trend of progressive ice-sheet thinning since at least 22 ka until 10 ka. The data also provide a minimum estimate (490 m) for ice-cap thickness on NW Alexander Island at the last glacial maximum. Cosmogenic 3He ages from a rare occurrence of mantle xenoliths on Rothschild Island yield variable ages up to 46 ka, probably reflecting exhumation by periglacial processes.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.B. Shipp, S.S. Lowe, A.L. Wellner, J.S. Mosola, A.B. 2002, The Antarctic ice sheet during the last glacial maximum and its subsequent retreat history: a review. Quaternary Science Reviews 22, 4970.CrossRefGoogle Scholar
Balco, G. Stone, J.O. Lifton, N.A. Dunai, T.J. 2008, A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195.Google Scholar
Bentley, M.J. 2010, The Antarctic palaeo record and its role in improving predictions of future Antarctic Ice Sheet change. Journal of Quaternary Science 25, 518.CrossRefGoogle Scholar
Bentley, M.J. Anderson, J.B. 1998, Glacial and marine geological evidence for the ice sheet configuration in the Weddell Sea–Antarctic Peninsula region during the Last Glacial Maximum. Antarctic Science 10, 307323.CrossRefGoogle Scholar
Bentley, M.J. Hodgson, D.A. Sugden, D.A. Roberts, S.J. Smith, J.A. Leng, M.J. Bryant, C. 2005, Early Holocene retreat of George VI Ice Shelf, Antarctic Peninsula. Geology 33, 173176.CrossRefGoogle Scholar
Bentley, M.J. Fogwill, C.J. Kubik, P.W. Sugden, D.E. 2006, Geomorphological evidence and cosmogenic 10Be/26Al exposure ages for the Last Glacial Maximum and deglaciation of the Antarctic Peninsula Ice Sheet. Geological Society of America Bulletin 118, 11491159.CrossRefGoogle Scholar
Bentley, M.J. Johnson, J.S. Hodgson, D.A. Dunai, T.J. Freeman, S.P.H.T. Ó'Cofaigh, C. 2011, Rapid deglaciation of Marguerite Bay, western Antarctic Peninsula in the Early Holocene. Quaternary Science Reviews 30, 33383349.CrossRefGoogle Scholar
Bierman, P.R. Marsella, K.A. Patterson, C. Davis, P.T. Caffee, M. 1999, Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin Island: a multiple nuclide approach. Geomorphology 27, 2539.CrossRefGoogle Scholar
Bolmer, S.T. 2008, A note on the development of the bathymetry of the continental margin west of the Antarctic Peninsula from 65° to 71°S and 65° to 78°W. Deep-Sea Research II 55, 271276.CrossRefGoogle Scholar
Bruno, L.A. Baur, H. Graf, T. Schlüchter, C. Signer, P. Wieler, R. 1997, Dating of Sirius Group tillites in the Antarctic Dry Valleys with cosmogenic 3He and 21Ne. Earth and Planetary Science Letters 147, 3754.CrossRefGoogle Scholar
Burn, R.W. 1984, The geology of the LeMay Group, Alexander Island. British Antarctic Survey Scientific Reports 109, .Google Scholar
Care, B.W. 1983, The petrology of the Rouen Mountains, northern Alexander Island. British Antarctic Survey Bulletin 52, 6386.Google Scholar
Clapperton, C.M. Sugden, D.E. 1982, Late Quaternary glacial history of George VI Sound area, West Antarctica. Quaternary Research 18, 243267.CrossRefGoogle Scholar
Clark, P.U. Dyke, A.S. Shakun, J.D. Carlson, A.E. Clark, J. Wohlfarth, B. Mitrovica, J.X. Hostetler, S.W. McCabe, A.M. 2009, The Last Glacial Maximum. Science 325, 710714.CrossRefGoogle ScholarPubMed
Convey, P. Gibson, J.A.E. Hillenbrand, C.-D. Hodgson, D.A. Pugh, P.J.A. Smellie, J.L. Stevens, M.I. 2008, Antarctic terrestrial life — challenging the history of the frozen continent?. Biological Reviews 83, 103117.CrossRefGoogle ScholarPubMed
Cook, A.J. Fox, A.J. Vaughan, D.G. Ferrigno, J.G. 2005, Retreating glacier fronts on the Antarctic Peninsula over the last half century. Science 308, 541544.CrossRefGoogle Scholar
Denton, G.H. Prentice, M.L. Burckle, L.H. 1991, Cainozoic history of the Antarctic Ice Sheet. Tingley, R.J. The Geology of Antarctica. Oxford University Press Oxford 265433.Google Scholar
Goehring, B.M. Kurz, M.D. Balco, G. Schaefer, J.M. Licciardi, J. Lifton, N. 2010, A reevaluation of in situ cosmogenic 3He production rates. Quaternary Geochronology 5, 410418.CrossRefGoogle Scholar
Graham, A.G.C. Nitsche, F.O. Larter, R.D. 2010, An improved bathymetry compilation for the Bellingshausen Sea, Antarctica, to inform ice-sheet and ocean models. The Cryosphere Discussions 4, 20792101 10.5194/tcd-4-2079-2010 Google Scholar
Heroy, D.C. Anderson, J.B. 2007, Radiocarbon constraints on Antarctic Peninsula Ice Sheet retreat following the Last Glacial Maximum (LGM). Quaternary Science Reviews 26, 32863297.CrossRefGoogle Scholar
Hodgson, D.A. Bentley, M.J. Roberts, S.J. Smith, J.A. Sugden, D.E. Domack, E.W. 2006, Examining Holocene stability of Antarctic Peninsula ice shelves. EOS Transactions, American Geophysical Union 87, 31 305308.CrossRefGoogle Scholar
Hodgson, D.A. Roberts, S.J. Bentley, M.J. Smith, J.A. Johnson, J.S. Verleyen, E. Vyverman, W. Hodson, A.J. Leng, M.J. Cziferszky, A. Fox, A.J. Sanderson, D.C.W. 2009, Exploring former subglacial Hodgson Lake, Antarctica. Paper I: site description, geomorphology and limnology. Quaternary Science Reviews 28, 22952309.CrossRefGoogle Scholar
Huybrechts, P. 2002, Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary Science Reviews 21, 203231.CrossRefGoogle Scholar
IPCC, 2007, Climate Change 2007: the Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press UK.Google Scholar
Johnson, J.S. Smellie, J.L. Nelson, A.E. Stuart, F.M. 2009, History of the Antarctic Peninsula Ice Sheet since the early Pliocene—evidence from cosmogenic dating of Pliocene lavas on James Ross Island, Antarctica. Global and Planetary Change 69, 205213.CrossRefGoogle Scholar
Johnson, J.S. Bentley, M.J. Roberts, S.J. Binnie, S.A. Freeman, S.P.H.T. 2011, Holocene deglacial history of the north east Antarctic Peninsula - a review and new chronological constraints. Quaternary Science Reviews 30, 37913802 10.1016/j.quascirev.2011.10.011 CrossRefGoogle Scholar
Kennedy, D.S. Anderson, J.B. 1989, Glacial–marine sedimentation and Quaternary glacial history of Marguerite Bay, Antarctic Peninsula. Quaternary Research 31, 255276.CrossRefGoogle Scholar
Kilfeather, A.A. Ó Cofaigh, C. Lloyd, J.M. Dowdeswell, J.A. Xu, S. Moreton, S.G. 2011, Ice-stream retreat and ice-shelf history in Marguerite Trough, Antarctic Peninsula: sedimentological and foraminiferal signatures. Geological Society of America, Bulletin 123, 5/6 9971015 10.1130/B30282.1 CrossRefGoogle Scholar
Lal, D. 1991, Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 2–4 424439.CrossRefGoogle Scholar
Larter, R.D. Cunningham, A.P. 1993, The depositional pattern and distribution of glacial-interglacial sequences on the Antarctic Peninsula Pacific margin. Marine Geology 109, 203219.CrossRefGoogle Scholar
Nishiizumi, K. Kohl, C.P. Arnold, J.R. Klein, J. Fink, D. 1991, Cosmic ray produced 10Be and 26Al in Antarctic rocks: exposure and erosion rates. Earth and Planetary Science Letters 104, 440454.CrossRefGoogle Scholar
Nishiizumi, K. Imamura, M. Caffee, M.W. Southon, J.R. Finkel, R.C. McAninch, J. 2007, Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 258, 2 403413.CrossRefGoogle Scholar
Ó Cofaigh, C. Pudsey, C.J. Dowdeswell, J.A. Morris, P. 2002, Evolution of subglacial bedforms along a paleo-ice stream, Antarctic Peninsula continental shelf. Geophysical Research Letters 29, 10.1029/2001GL014488 CrossRefGoogle Scholar
Ó Cofaigh, C. Dowdeswell, J.A. Allen, C.S. Hiemstra, J. Pudsey, C.J. Evans, J. Evans, D.J.A. 2005, Flow dynamics and till genesis associated with a marine-based Antarctic palaeo-ice stream. Quaternary Science Reviews 24, 709740.CrossRefGoogle Scholar
Payne, A.J. Sugden, D.A. Clapperton, C.M. 1989, Modeling the growth and decay of the Antarctic Peninsula Ice Sheet. Quaternary Research 31, 119134.CrossRefGoogle Scholar
Pope, P.G. Anderson, J.B. 1992, Late Quaternary glacial history of the northern Antarctic Peninsula's western continental shelf: evidence from the marine record. Elliot, D.H. Contributions to Antarctic Research III. Antarctic Research Series 57, 6391.CrossRefGoogle Scholar
Pritchard, H.D. Arthern, R.J. Vaughan, D.G. Edwards, L.A. 2009, Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971975.CrossRefGoogle ScholarPubMed
Roberts, S.J. Hodgson, D.A. Bentley, M.J. Sanderson, D.C.W. Milne, G. Smith, J.A. Verleyen, E. Balbo, A. 2009, Holocene relative sea-level change and deglaciation on Alexander Island, Antarctic Peninsula, from elevated lake deltas. Geomorphology 112, 122134.CrossRefGoogle Scholar
Smellie, J.L. Pankhurst, R.J. Hole, M.J. Thomson, J.W. 1988, Age, distribution and eruptive conditions of late Cenozoic alkaline volcanism in the Antarctic Peninsula and eastern Ellsworth Land: review. British Antarctic Survey Bulletin 80, 2149.Google Scholar
Smith, J.A. Bentley, M.J. Hodgson, D.A. Roberts, S.J. Leng, M.J. Lloyd, J.M. Barrett, M.S. Bryant, C. Sugden, D.E. 2007, Oceanic and atmospheric forcing of early Holocene ice shelf retreat, George VI Ice Shelf, Antarctica Peninsula. Quaternary Science Reviews 26, 500516.CrossRefGoogle Scholar
Stone, J.O. 2000, Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, B10 2375323759.CrossRefGoogle Scholar
Stone, J.O. Balco, G. Sugden, D.E. Caffee, M.W. Sass, L.C. Cowdery, S.G. Siddoway, C. 2003, Holocene deglaciation of Marie Byrd Land, West Antarctica. Science 299, 99102.CrossRefGoogle ScholarPubMed
Sugden, D.A. Bentley, M.J. Ó Cofaigh, C. 2006, Geological and geomorphological insights into Antarctic ice sheet evolution. Philosophical Transactions of the Royal Society A 364, 16071625.CrossRefGoogle ScholarPubMed
Summerfield, M.A. Stuart, F.M. Cockburn, H.A.P. Sugden, D.E. Denton, G. Dunai, T. Marchant, D.R. 1999, Long-term rates of denudation in the Dry Valleys, Transantarctic Mountains, southern Victoria Land, Antarctica based on in-situ-produced cosmogenic 21Ne. Geomorphology 27, 113129.Google Scholar
Supplementary material: PDF

Johnson et al. Supplementary Material

Supplementary Data

Download Johnson et al. Supplementary Material(PDF)
PDF 847.7 KB