Published online by Cambridge University Press: 15 May 2019
High-resolution climate archives of the Late Holocene are essential in the study of paleoclimatic dynamics and for understanding the importance of natural and anthropogenic influences on past and future climate changes. Here, we present well-dated X-ray fluorescence scanning records retrieved from a varved sediment core from Lake Kusai. These records show the decadal- to centennial-scale paleoclimatic variability of the northern Qinghai-Tibetan Plateau over the last 2000 yr. Ca is mainly related to the precipitation of authigenic carbonates and is a proxy for temperature changes. The Ca record of Lake Kusai is well-correlated with the variations and periodicities of solar activity. Therefore, solar output can be suggested as being the predominant forcing mechanism of decadal- to centennial-scale temperature fluctuations over the last 2000 yr. The evolution of effective moisture was inferred from the log-ratios of Rb/Sr, which demonstrated synchronous changes with the typical Indian summer monsoon record from Dongge Cave. These results indicate that the decadal- to centennial-scale effective moisture evolution of the northern Qinghai-Tibetan Plateau is mainly influenced by the Indian summer monsoon. Additionally, we have not found the evident periodicities of solar activity in our effective moisture record over the last 2000 yr.