Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T21:45:11.030Z Has data issue: false hasContentIssue false

Cryptotephra from Lipari Volcano in the eastern Gulf of Taranto (Italy) as a time marker for paleoclimatic studies

Published online by Cambridge University Press:  03 April 2018

Valerie Menke*
Affiliation:
Center for Earth System Research and Sustainability, Institute of Geology, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
Steffen Kutterolf
Affiliation:
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany
Carina Sievers
Affiliation:
Center for Earth System Research and Sustainability, Institute of Geology, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
Julie Christin Schindlbeck
Affiliation:
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany Institute of Geoscience, University of Heidelberg, Im Neuenheimer Feld 234-236, 69120 Heidelberg, Germany
Gerhard Schmiedl
Affiliation:
Center for Earth System Research and Sustainability, Institute of Geology, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany
*
*Corresponding author at: Center for Earth System Research and Sustainability, Institute of Geology, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany. E-mail address: [email protected] (V. Menke).

Abstract

We present the first tephroanalysis based on geochemical fingerprinting of volcanic glass shards from eastern Apulian shelf sediments in the Gulf of Taranto (Italy). High sedimentation rates in the gulf are ideal for high-resolution paleoclimate studies, which rely on accurate age models. Cryptotephrostratigraphy is a novel tool for the age assessment of marine sediment cores in the absence of discrete tephra layers. High-resolution quantitative analysis of glass shard abundance in the uppermost 45 cm of a gravity core identified two cryptotephras. Microprobe analysis of glass shards supported by an accelerator mass spectrometry 14C–based age model identified the pronounced primary cryptotephra at 36 cm bsf (below sea floor) as the felsic AD 776 Monte Pilato Eruption on the island of Lipari, whereas the thinner, mafic tephra layer at 1.5 cm bsf is associated with the AD 1944 eruption of Somma-Vesuvius. Identifying these tephra layers provides an additional, 14C-independent, stratigraphic framework for further paleoclimatic studies allowing us to link Mediterranean climate and hydrology to orbital variation and large-scale atmospheric processes. Our results underline the importance of qualitative tephrostratigraphy in a highly geodynamic region, where solely quantitative approaches have demonstrated to bear a high potential for false correlations between tephra layers and eruptions.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albert, P., Tomlinson, E., Smith, V., Di Roberto, A., Todman, A., Rosi, M., Marani, M., Muller, W., Menzies, M., 2012. Marine-continental tephra correlations: volcanic glass geochemistry from the Marsili Basin and the Aeolian Islands, Southern Tyrrhenian Sea, Italy. Journal of Volcanology and Geothermal Research 229, 7494.Google Scholar
Albert, P.G., Tomlinson, E.L., Smith, V.C., Di Traglia, F., Pistolesi, M., Morris, A., Donato, P., De Rosa, R., Sulpizio, R., Keller, J., 2017. Glass geochemistry of pyroclastic deposits from the Aeolian Islands in the last 50 ka: a proximal database for tephrochronology. Journal of Volcanology and Geothermal Research 336, 81107.Google Scholar
Arnò, V., Principe, C., Rosi, M., Santacroce, R., Sbrana, A., Sheridan, M., 1987. Eruptive history. Somma-Vesuvius 114, 53103.Google Scholar
Barberi, F., Macedonio, G., Pareschi, M., Santacroce, R., 1990. Mapping the tephra fallout risk: an example from Vesuvius, Italy. Nature 344, 142144.Google Scholar
Beccaluva, L., Bianchini, G., Bonadiman, C., Coltorti, M., Milani, L., Salvini, L., Siena, F., Tassinari, R., 2007. Intraplate lithospheric and sublithospheric components in the Adriatic domain: nephelinite to tholeiite magma generation in the Paleogene Veneto volcanic province, southern Alps. Geological Society of America Special Papers 418, 131152.Google Scholar
Bertagnini, A., Di Roberto, A., Pompilio, M., 2011. Paroxysmal activity at Stromboli: lessons from the past. Bulletin of Volcanology 73, 12291243.Google Scholar
Bonino, G., Castagnoli, G.C., Callegari, E., Zhu, G.-M., 1993. Radiometric and tephroanalysis dating of recent Ionian Sea cores. Il. Nuovo Cimento C 16, 155162.CrossRefGoogle Scholar
Bourne, A., Lowe, J., Trincardi, F., Asioli, A., Blockley, S., Wulf, S., Matthews, I., Piva, A., Vigliotti, L., 2010. Distal tephra record for the last ca 105,000 years from core PRAD 1-2 in the central Adriatic Sea: implications for marine tephrostratigraphy. Quaternary Science Reviews 29, 30793094.Google Scholar
Castagnoli, G.C., Bonino, G., Caprioglio, F., Provenzale, A., Serio, M., Guang‐Mei, Z., 1990. The carbonate profile of two recent Ionian Sea cores: evidence that the sedimentation rate is constant over the last millennia. Geophysical Research Letters 17, 19371940.Google Scholar
Costa, A., Macedonio, G., Folch, A., 2006. A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth and Planetary Science Letters 241, 634647.Google Scholar
D’Antonio, M., Tilton, G.R., Civetta, L., 1996. Petrogenesis of Italian alkaline lavas deduced from Pb‐Sr‐Nd isotope relationships. In: Basu, A., Hart, S. (Eds.), Earth Processes: Reading the Isotopic Code. Geophysical Monograph 95. American Geophysical Union, Washington, DC, pp. 253267.Google Scholar
Davì, M., De Rosa, R., Barca, D., 2009. A LA-ICP-MS study of minerals in the Rocche Rosse magmatic enclaves: evidence of a mafic input triggering the latest silicic eruption of Lipari Island (Aeolian Arc, Italy). Journal of Volcanology and Geothermal Research 182, 4556.CrossRefGoogle Scholar
Davies, S.M., Branch, N.P., Lowe, J.J., Turney, C.S., 2002. Towards a European tephrochronological framework for Termination 1 and the Early Holocene. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 360, 767802.Google Scholar
Davies, S.M., Elmquist, M., Bergman, J., Wohlfarth, B., Hammarlund, D., 2007. Cryptotephra sedimentation processes within two lacustrine sequences from west central Sweden. Holocene 17, 319330.Google Scholar
Davies, S.M., Wohlfarth, B., Wastegård, S., Andersson, M., Blockley, S., Possnert, G., 2004. Were there two Borrobol Tephras during the early Lateglacial period: implications for tephrochronology? Quaternary Science Reviews 23, 581589.Google Scholar
Dee, D.P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., 2011. The ERA‐Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society 137, 553597.Google Scholar
De Vivo, B., Rolandi, G., Gans, P., Calvert, A., Bohrson, W., Spera, F., Belkin, H., 2001. New constraints on the pyroclastic eruptive history of the Campanian volcanic plain (Italy). Mineralogy and Petrology 73, 4765.Google Scholar
Di Renzo, V., Di Vito, M., Arienzo, I., Carandente, A., Civetta, L., D’antonio, M., Giordano, F., Orsi, G., Tonarini, S., 2007. Magmatic history of Somma–Vesuvius on the basis of new geochemical and isotopic data from a deep borehole (Camaldoli della Torre). Journal of Petrology 48, 753784.Google Scholar
Dugmore, A., 1989. Icelandic volcanic ash in Scotland. Scottish Geographical Magazine 105, 168172.CrossRefGoogle Scholar
Forni, F., Lucchi, F., Peccerillo, A., Tranne, C., Rossi, P., Frezzotti, M., 2013. Stratigraphy and geological evolution of the Lipari volcanic complex (central Aeolian archipelago). Geological Society, London, Memoirs 37, 213279.Google Scholar
Goudeau, M.-L.S., Grauel, A.-L., Bernasconi, S.M., de Lange, G.J., 2013. Provenance of surface sediments along the southeastern Adriatic coast off Italy: an overview. Estuarine, Coastal and Shelf Science 134, 4556.Google Scholar
Goudeau, M.-L.S., Grauel, A.-L., Tessarolo, C., Leider, A., Chen, L., Bernasconi, S.M., Versteegh, G.J., Zonneveld, K.A., Boer, W., Alonso-Hernandez, C., 2014. The Glacial–Interglacial transition and Holocene environmental changes in sediments from the Gulf of Taranto, central Mediterranean. Marine Geology 348, 88102.Google Scholar
Grünthal, G., Stromeyer, D., 1992. The recent crustal stress field in central Europe: trajectories and finite element modeling. Journal of Geophysical Research: Solid Earth 97, 1180511820.Google Scholar
Guichard, F., Carey, S., Arthur, M., Sigurdsson, H., Arnold, M., 1993. Tephra from the Minoan eruption of Santorini in sediments of the Black Sea. Nature 363, 610612.Google Scholar
Hunt, J.B., Hill, P.G., 2001. Tephrological implications of beam size—sample‐size effects in electron microprobe analysis of glass shards. Journal of Quaternary Science 16, 105117.Google Scholar
Keller, J., Kraml, M., Scheld, A., 1996. Late Quaternary tephrochronological correlation between deep-sea sediments and the land record in the central Mediterranean. 30th International Geological Congress, Beijing, p. 204.Google Scholar
Keller, J., Ryan, W., Ninkovich, D., Altherr, R., 1978. Explosive volcanic activity in the Mediterranean over the past 200,000 yr as recorded in deep-sea sediments. Geological Society of America Bulletin 89, 591604.Google Scholar
Kutterolf, S., Freundt, A., Burkert, C., 2011. Eruptive history and magmatic evolution of the 1.9 kyr plinian dacitic Chiltepe Tephra from Apoyeque volcano in west-central Nicaragua. Bulletin of Volcanology 73, 811831.Google Scholar
Kutterolf, S., Freundt, A., Peréz, W., 2008. Pacific offshore record of plinian arc volcanism in Central America: 2. Tephra volumes and erupted masses. Geochemistry, Geophysics, Geosystems 9, Q02S02.Google Scholar
Kutterolf, S., Freundt, A., Perez, W., Wehrmann, H., Schmincke, H.-U., 2007. Late Pleistocene to Holocene temporal succession and magnitudes of highly-explosive volcanic eruptions in west-central Nicaragua. Journal of Volcanology and Geothermal Research 163, 5582.Google Scholar
Kutterolf, S., Schindlbeck, J., Anselmetti, F., Ariztegui, D., Brenner, M., Curtis, J., Schmid, D., Hodell, D., Mueller, A., Pérez, L., 2016. A 400-ka tephrochronological framework for Central America from Lake Petén Itzá (Guatemala) sediments. Quaternary Science Reviews 150, 200220.Google Scholar
Kuzucuoglu, C., Pastre, J.-F., Black, S., Ercan, T., Fontugne, M., Guillou, H., Hatté, C., Karabiyikoglu, M., Orth, P., Türkecan, A., 1998. Identification and dating of tephra layers from Quaternary sedimentary sequences of Inner Anatolia, Turkey. Journal of Volcanology and Geothermal Research 85, 153172.Google Scholar
Le Maitre, R.W.B., Dudek, P., Keller, A., Lameyre, J., Le Bas, J., Sabine, M., Schmid, P., Sorensen, R., Streckeisen, H., Woolley, A., 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific, Oxford, UK.Google Scholar
Lipizer, M., Partescano, E., Rabitti, A., Giorgetti, A., Crise, A., 2014. Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic Sea. Ocean Science 10, 771797.Google Scholar
Lowe, D.J., 2011. Tephrochronology and its application: a review. Quaternary Geochronology 6, 107153.Google Scholar
Lowe, D.J., Hunt, J.B., 2001. A summary of terminology used in tephra-related studies. Les Dossiers de l’Archéo-Logis 1, 1722.Google Scholar
Lucchi, F., Keller, J., Tranne, C., 2013. Regional stratigraphic correlations across the Aeolian archipelago (southern Italy). Geological Society, London, Memoirs 37, 5581.Google Scholar
Lucchi, F., Tranne, C., De Astis, G., Keller, J., Losito, R., Morche, W., 2008. Stratigraphy and significance of Brown Tuffs on the Aeolian Islands (southern Italy). Journal of Volcanology and Geothermal Research 177, 4970.Google Scholar
Margari, V., Pyle, D., Bryant, C., Gibbard, P., 2007. Mediterranean tephra stratigraphy revisited: results from a long terrestrial sequence on Lesvos Island, Greece. Journal of Volcanology and Geothermal Research 163, 3454.Google Scholar
Marianelli, P., Métrich, N., Sbrana, A., 1999. Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius. Bulletin of Volcanology 61(1-2), 4863.Google Scholar
May, P.W., 1982. Climatological Flux Estimates in the Mediterranean Sea. Part I. Winds and Wind Stresses. Defense Technical Information Center, Ft. Belvoir, VA.Google Scholar
Neugebauer, I., Wulf, S., Schwab, M.J., Serb, J., Plessen, B., Appelt, O., Brauer, A., 2017. Implications of S1 tephra findings in Dead Sea and Tayma palaeolake sediments for marine reservoir age estimation and palaeoclimate synchronisation. Quaternary Science Reviews 170, 269275.Google Scholar
Newhall, C.G., Self, S., 1982. The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research: Oceans 87, 12311238.Google Scholar
Paterne, M., Guichard, F., Labeyrie, J., 1988. Explosive activity of the south Italian volcanoes during the past 80,000 years as determined by marine tephrochronology. Journal of Volcanology and Geothermal Research 34, 153172.Google Scholar
Paterne, M., Guichard, F., Labeyrie, J., Gillot, P., Duplessy, J.-C., 1986. Tyrrhenian Sea tephrochronology of the oxygen isotope record for the past 60,000 years. Marine Geology 72, 259285.Google Scholar
Paterne, M., Labeyrie, J., Guichard, F., Mazaud, A., Maitre, F., 1990. Fluctuations of the Campanian explosive volcanic activity (south Italy) during the past 190,000 years, as determined by marine tephrochronology. Earth and Planetary Science Letters 98, 166174.Google Scholar
Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology 58(1), 6381.Google Scholar
Piochi, M., De Vivo, B., Ayuso, R., 2006. The magma feeding system of Somma-Vesuvius (Italy) strato-volcano: new inferences from a review of geochemical and Sr, Nd, Pb and O isotope data. Developments in Volcanology 9, 181202.Google Scholar
Pyne-O’Donnell, S., Cwynar, L., Vincent, J., Spear, R., Froese, D., 2014. The Glacier Peak Tephra: a continental-scale latest Pleistocene time horizon. American Geophysical Union, Fall Meeting, Abstract V31C-4762.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Schacht, U., 2005. Alteration of Volcanic Glasses in Marine Sediments: Laboratory Experiments and Field Studies. PhD dissertation, Christian-Albrechts Universität zu Kiel, Kiel, Germany.Google Scholar
Schindlbeck, J.C., Kutterolf, S., Freundt, A., Alvarado, G., Wang, K.L., Straub, S., Hemming, S., Frische, M., Woodhead, J., 2016. Late Cenozoic tephrostratigraphy offshore the southern Central American Volcanic Arc: 1. Tephra ages and provenance. Geochemistry, Geophysics, Geosystems 17, 46414668.Google Scholar
Schmincke, H.-U., Sumita, M., 2013. Fire in the sea—growth and destruction of submarine volcanoes. Geology 41, 381382.Google Scholar
Siani, G., Sulpizio, R., Paterne, M., Sbrana, A., 2004. Tephrostratigraphy study for the last 18,000 14 C years in a deep-sea sediment sequence for the South Adriatic. Quaternary Science Reviews 23, 24852500.Google Scholar
Taricco, C., Alessio, S., Vivaldo, G., 2008. Sequence of eruptive events in the Vesuvio area recorded in shallow-water Ionian Sea sediments. Nonlinear Processes in Geophysics 15, 2532.Google Scholar
Taricco, C., Ghil, M., Alessio, S., Vivaldo, G., 2009. Two millennia of climate variability in the central Mediterranean. Climate of the Past 5, 171181.Google Scholar
Taricco, C., Vivaldo, G., Alessio, S., Rubinetti, S., Mancuso, S., 2015. A high-resolution δ18O record and Mediterranean climate variability. Climate of the Past 11, 509522.Google Scholar
Tomlinson, E.L., Smith, V.C., Albert, P.G., Aydar, E., Civetta, L., Cioni, R., Çubukçu, E., Gertisser, R., Isaia, R., Menzies, M.A., 2015. The major and trace element glass compositions of the productive Mediterranean volcanic sources: tools for correlating distal tephra layers in and around Europe. Quaternary Science Reviews 118, 4866.Google Scholar
Turchetto, M., Boldrin, A., Langone, L., Miserocchi, S., Tesi, T., Foglini, F., 2007. Particle transport in the Bari canyon (southern Adriatic Sea). Marine Geology 246, 231247.Google Scholar
Turney, C.S., Lowe, J.J., Davies, S.M., Hall, V., Lowe, D.J., Wastegård, S., Hoek, W.Z., Alloway, B., 2004. Tephrochronology of Last Termination sequences in Europe: a protocol for improved analytical precision and robust correlation procedures (a joint SCOTAV–INTIMATE proposal). Journal of Quaternary Science 19, 111120.Google Scholar
Van der Plas, L., Tobi, A., 1965. A chart for judging the reliability of point counting results. American Journal of Science 263, 8790.Google Scholar
Vinci, A., 1985. Distribution and chemical composition of tephra layers from eastern Mediterranean abyssal sediments. Marine Geology 64, 143155.Google Scholar
Vivaldo, G., Taricco, C., Alessio, S., Ghil, M., 2009. Accurate dating of Gallipoli Terrace (Ionian Sea) sediments: historical eruptions and climate records. PAGES: Past Global. Changes 17, 89.Google Scholar
Vogel, H., Zanchetta, G., Sulpizio, R., Wagner, B., Nowaczyk, N., 2010. A tephrostratigraphic record for the last glacial–interglacial cycle from Lake Ohrid, Albania and Macedonia. Journal of Quaternary Science 25, 320338.Google Scholar
Wohlfarth, B., Blaauw, M., Davies, S., Andersson, M., Wastegård, S., Hormes, A., Possnert, G., 2006. Constraining the age of Lateglacial and early Holocene pollen zones and tephra horizons in southern Sweden with Bayesian probability methods. Journal of Quaternary Science 21, 321334.Google Scholar
Wortel, M., Spakman, W., 2000. Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290, 19101917.Google Scholar
Wulf, S., Kraml, M., Brauer, A., Keller, J., Negendank, J.F., 2004. Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quaternary International 122, 730.Google Scholar
Wulf, S., Kraml, M., Keller, J., 2008. Towards a detailed distal tephrostratigraphy in the central Mediterranean: the last 20,000 yrs record of Lago Grande di Monticchio. Journal of Volcanology and Geothermal Research 177, 118132.Google Scholar
Wulf, S., Kraml, M., Kuhn, T., Schwarz, M., Inthorn, M., Keller, J., Kuscu, I., Halbach, P., 2002. Marine tephra from the Cape Riva eruption (22 ka) of Santorini in the Sea of Marmara. Marine Geology 183, 131141.Google Scholar
Zanchetta, G., Sulpizio, R., Roberts, N., Cioni, R., Eastwood, W.J., Siani, G., Caron, B., Paterne, M., Santacroce, R., 2011. Tephrostratigraphy, chronology and climatic events of the Mediterranean basin during the Holocene: an overview. Holocene 21, 3352.Google Scholar
Zonneveld, K.A., Chen, L., Elshanawany, R., Fischer, H.W., Hoins, M., Ibrahim, M.I., Pittauerova, D., Versteegh, G.J., 2012. The use of dinoflagellate cysts to separate human-induced from natural variability in the trophic state of the Po River discharge plume over the last two centuries. Marine Pollution Bulletin 64, 114132.Google Scholar
Zonneveld, K.A., Siccha, M., 2016. Dinoflagellate cyst based modern analogue technique at test—a 300 year record from the Gulf of Taranto (eastern Mediterranean). Palaeogeography, Palaeoclimatology, Palaeoecology 450, 1737.CrossRefGoogle Scholar
Supplementary material: File

Menke et al. supplementary material 1

Supplementary Table

Download Menke et al. supplementary material 1(File)
File 126 KB
Supplementary material: File

Menke et al. supplementary material 2

Supplementary Table

Download Menke et al. supplementary material 2(File)
File 63.9 KB
Supplementary material: File

Menke et al. supplementary material 3

Supplementary Table

Download Menke et al. supplementary material 3(File)
File 34.6 KB