Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T05:11:06.979Z Has data issue: false hasContentIssue false

A continuous stable isotope record from the penultimate glacial maximum to the Last Interglacial (159–121 ka) from Tana Che Urla Cave (Apuan Alps, central Italy)

Published online by Cambridge University Press:  20 January 2017

Eleonora Regattieri*
Affiliation:
Dipartimento di Scienze della Terra, Via S. Maria 53 56126 Pisa, Italy Istituto di Geoscienze e Georisorse IGG-CNR, via Moruzzi 1, 56100 Pisa, Italy
Giovanni Zanchetta
Affiliation:
Dipartimento di Scienze della Terra, Via S. Maria 53 56126 Pisa, Italy Istituto di Geoscienze e Georisorse IGG-CNR, via Moruzzi 1, 56100 Pisa, Italy Istituto Nazionale di Geofisica e Vulcanologia INGV, Via della Faggiola 32, Pisa, Italy
Russell N. Drysdale
Affiliation:
Department of Resource Management and Geography, University of Melbourne, Victoria 3010, Australia
Ilaria Isola
Affiliation:
Istituto Nazionale di Geofisica e Vulcanologia INGV, Via della Faggiola 32, Pisa, Italy
John C. Hellstrom
Affiliation:
School of Earth Sciences, University of Melbourne, Victoria 3010 Australia
Adriano Roncioni
Affiliation:
Gruppo Speleologico Lucchese, via Don Minzoni, Lucca, Italy
*
*Corresponding author at: Dipartimento di Scienze della Terra, Via S. Maria 53 56126 Pisa, Italy. E-mail address:[email protected] (E. Regattieri).

Abstract

Relatively few radiometrically dated records are available for the central Mediterranean spanning the marine oxygen isotope stage 6–5 (MIS 6–5) transition and the first part of the Last Interglacial. Two flowstone cores from Tana che Urla Cave (TCU, central Italy), constrained by 19 U/Th ages, preserve an interval of continuous speleothem deposition between ca. 159 and 121 ka. A multiproxy record (δ18O, δ13C, growth rate and petrographic changes) obtained from this flowstone preserves significant regional-scale hydrological changes through the glacial/interglacial transition and multi-centennial variability (interpreted as alternations between wetter and drier periods) within both glacial and interglacial stages. The glacial stage shows a wetter period between ca. 154 and 152 ka, while the early to middle Last Interglacial period shows several drying events at ca. 129, 126 and 122 ka, which can be placed in the wider context of climatic instability emerging from North Atlantic marine and NW European terrestrial records. The TCU record also provides important insights into the evolution of local environmental conditions (i.e. soil development) in response to regional and global-scale climate events.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.R.M., and Huntley, B. Last Interglacial palaeovegetation, palaeoenvironments and chronology: A new record from Lago Grande di Monticchio, southern Italy. Quaternary Science Reviews 28, (2009). 15211538.CrossRefGoogle Scholar
Almogi-Labin, A., Bar-Matthews, M., Shriki, D., Kolosovsky, E., Paterne, M., Schilman, B., and Matthews, A. Climatic variability during the last ∼ 90 ka of the southern and northern Levantine Basin as evident from marine records and speleothems. Quaternary Science Reviews 28, (2009). 28822896.Google Scholar
Ayalon, A., Bar-Matthews, M., and Kaufman, A. Climatic conditions during marine isotope stage 6 in the eastern Mediterranean region from the isotopic composition of speleothems of Soreq Cave, Israel. Geology 30, (2002). 303306.2.0.CO;2>CrossRefGoogle Scholar
Baker, A., Barnes, W.L., and Smart, P.L. Variations in the discharge and organic matter content of stalagmite drip waters in Lower Cave, Bristol. Hydrological Processes 11, (1997). 541555.3.0.CO;2-Z>CrossRefGoogle Scholar
Baneschi, I., Piccini, L., Regattieri, E., Isola, I., Guidi, M., Lotti, L., Mantelli, F., Menichetti, M., Drysdale, R.N., and Zanchetta, G. Hypogean microclimatology and hydrology of the 800–900 m a.s.l. level in the Monte Corchia Cave (Tuscany, Italy): Preliminary considerations and implications for paleoclimatological studies. Acta Carsologica 40, (2011). 175187.Google Scholar
Bard, E., Delaygue, G., Rostek, F., Antonioli, F., Silenzi, S., and Schrag, D.P. Hydrological conditions over the western Mediterranean basin during the deposition of the cold Sapropel 6 (ca. 175 kyr BP. Earth and Planetary Science Letters 202, (2002). 481494.Google Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., and Wasserburg, G.J. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq Cave, Israel. Earth and Planetary Science Letters 166, (1999). 8595.Google Scholar
Bar-Matthews, M., Ayalon, A., and Kaufmann, A. Timing and hydrological conditions of sapropel events in the eastern Mediterranean, as evident from speleothems, Soreq Cave, Israel. Chemical Geology 169, (2000). 145156.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., and Gilmour, M. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67, (2003). 31813199.Google Scholar
Berger, A., and Loutre, M.F. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, (1991). 297317.Google Scholar
Berti, F. Studio geochimico ed isotopico di suoli delle Alpi Apuane: Implicazioni per le ricostruzioni climatiche e paleoclimatiche. Master Thesis on Natural Sciences (2010). University of Pisa, 1115.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffman, S., Lotti-Bond, R., Hajadas, I., and Bonani, G. Persistent solar influence on North Atlantic climate during Holocene. Science 7, (2001). 21302136.CrossRefGoogle Scholar
Brauer, A., Allen, J.R.M., Mingram, J., Dulski, P., Wulf, S., and Huntley, B. Evidence for the last interglacial chronology and environmental change from Southern Europe. Proceedings of the National Academy of Sciences of the United States of America 104, (2007). 450455.CrossRefGoogle ScholarPubMed
Broecker, W., and Henderson, G. The sequence of events surrounding Termination II and their implications for the cause of glacial–interglacial CO2 changes. Paleoceanography 13, (1998). 352364.CrossRefGoogle Scholar
Cerling, T.E., Solomon, D.K., Quade, J., and Bowman, J.R. On the isotopic composition of carbon in soil carbon dioxide. Geochimica et Cosmochimica Acta 55, (1991). 34043405.Google Scholar
Cheddadi, R., and Rossignol-Strick, M. Eastern Mediterranean Quaternary paleoclimates from pollen and isotope records of marine cores in the Nile cone area. Paleoceanography 10, (1995). 291300.CrossRefGoogle Scholar
Cortecci, G., Dinelli, E., Indrizzi, M.C., Susini, C., and Adorni-Braccesi, A. The Apuane Alps metamorphic complex, northern Tuscany: chemical and isotopic features of Grezzoni and Marmi Dolomitici. Atti Soc. Tosc. Sci. Nat. Mem. A 106, (1999). 7989.Google Scholar
Couchoud, I., Genty, D., Hoffmann, D., Drysdale, R.N., and Blamart, D. Millennial-scale variability during the Last Interglacial recorded in a speleothem from south-western France. Quaternary Science Reviews 28, (2009). 32633274.CrossRefGoogle Scholar
Dansgaard, W. Stable isotopes in precipitation. Tellus 16, (1964). 436468.Google Scholar
Day, C.C., and Henderson, G.M. Oxygen isotopes in calcite under cave-analogue conditions. Geochimica et Cosmochimica Acta 75, (2011). 39563972.CrossRefGoogle Scholar
Dorale, A., and Liu, Z. Limitations of Hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. Journal of Cave and Karst Studies 71, (2005). 7380.Google Scholar
Drysdale, R.N., Zanchetta, G., Hellstrom, J.C., Fallick, A.E., Zhao, J.X., Isola, I., and Bruschi, G. Palaeoclimatic implications of the growth history and stable isotope (δ18O and δ13C) geochemistry of a Middle to Late Pleistocene stalagmite from central-western Italy. Earth and Planetary Science Letters 227, (2004). 215229.Google Scholar
Drysdale, R.N., Zanchetta, G., Hellstrom, J.C., Fallick, A.E., and Zhao, J.X. Stalagmite evidence for the onset of the Last Interglacial in southern Europe at 129 +/− 1 ka. Geophysical Research Letters 32, (2005). 14.Google Scholar
Drysdale, R.N., Zanchetta, G., Hellstrom, J.C., Maas, R., Fallick, A.E., Pickett, M., Cartwright, I., and Piccini, L. Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone. Geology 34, (2006). 101104.Google Scholar
Drysdale, R.N., Zanchetta, G., Hellstrom, J.C., Fallick, A.E., McDonald, J., and Cartwright, I. Stalagmite evidence for the precise timing of North Atlantic cold events during the early last glacial. Geology 35, (2007). 7780.Google Scholar
Drysdale, R.N., Zanchetta, G., Hellstrom, J.C., Fallick, A.E., Sanchez-Goni, M.F., Couchoud, I., McDonald, J., Maas, R., Lohmann, G., and Isola, I. Evidence for obliquity forcing of glacial termination II. Science 325, (2009). 15271531.Google Scholar
Dulinski, M., and Rozanski, K. Formation of C-13 C-12 isotope ratios in speleothems—A semidynamic model. Radiocarbon 32, (1990). 716.CrossRefGoogle Scholar
Fairchild, I.J., and Baker, A. Speleothem science—From processes to past environments. Quaternary geosciences series. (2012). Wiley-Blakwell, 3370.Google Scholar
Fairchild, I.J., Smith, C.L., Baker, A., Fuller, L., Spötl, C., Mattey, D., and McDermott, F. Modification and preservation of environmental signals in speleothems. Earth-Science Reviews 75, 1 (2006). 105153.CrossRefGoogle Scholar
Fletcher, W.J., Debret, M., and Sanchez-Goni, M.F. Mid-Holocene emergence of a low frequency millennial oscillation in western Mediterranean climate: Implications for past dynamics of the North Atlantic atmospheric westerlies. The Holocene (2012). 114.Google Scholar
Follieri, M., Magri, D., and Sadori, L. 250,000-year pollen record from Valle di Castiglione (Roma). Pollen et Spores 30, (1988). 329356.Google Scholar
Frisia, S., Borsato, A., Fairchild, I.J., and McDermott, F. Calcite fabrics, growth mechanisms and environments of formation in speleothems from the Italian Alps and southwestern Ireland. Journal of Sedimentary Petrology 70, (2000). 11831196.Google Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and Van-Exter, S. Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, (2001). 833837.CrossRefGoogle Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., and Van-Exter, S. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, 6925 (2003). 833837.Google Scholar
Hellstrom, J.C. Rapid and accurate U/Th dating using parallel ion-counting multicollector ICP-MS. Journal of Analytical Atomic Spectrometry 18, (2003). 13461351.Google Scholar
Hellstrom, J.C. U-Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quaternary Geochronology 1, (2006). 289295.Google Scholar
Hendy, C.H. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta 35, (1971). 801824.Google Scholar
Heusser, L., and Oppo, D. Millennial- and orbital-scale climate variability in south-eastern United States and in the subtropical Atlantic during Marine Isotope Stage 5: Evidence from pollen and isotopes in ODP Site 1059. Earth and Planetary Science Letters 214, (2003). 483490.CrossRefGoogle Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., and Prell, W.L. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18 O record. Milankovitch and climate: Understanding the response to astronomical forcing, Proceedings of the NATO Advanced Research Workshop. (1984). 269 Google Scholar
Kallel, N., Duplessy, J.C., Labeyrie, L., Fontugne, M., Paterne, M., and Montacer, M. Mediterranean pluvial periods and sapropel formation over the last 200 000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 157, 1 (2000). 4558.Google Scholar
Kim, S.T., and O'Neill, J.R. Equilibrium and non-equilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, (1997). 34613475.CrossRefGoogle Scholar
Kolodny, Y., Stein, M., and Machlus, M. Sea–rain–lake relation in the Last Glacial East Mediterranean revealed by δ18O-δ13C in Lake Lisan aragonites. Geochimica et Cosmochimica Acta 69, (2005). 40454060.Google Scholar
Kukla, G., Mcmanus, J.F., Rousseau, D.D., and Chuine, I. How long and how stable was the Last Interglacial?. Quaternary Science Reviews 16, (1997). 605612.Google Scholar
Kukla, G.J., Bender, M.L., de Beaulieu, J.L., Bond, G., W.S., , Cleveringa, P., Gavin, J.E., Herbert, T.D., Imbrie, J., Jouzel, J., L.D., , Knudsen, K.L., McManus, J.F., Merkt, J., Muhs, D.R., Muller, H., Poore, R.Z., Porter, S.C., Seret, G., Shackleton, N.J., Turner, C., Tzedakis, P.C., and Winograd, I.J. Last interglacial climates. Quaternary Research 58, (2002). 213.Google Scholar
Lezine, A.M., Von Grafenstein, U., Andersen, N., Belmecheri, S., Bordon, A., Caron, B., Cazet, J.P., Erlenkeuser, H., Fouached, E., Grenier, C., Huntsman-Mapila, P., Hureau-Mazaudier, D., Manelli, D., Mazaud, A., Robert, C., Sulpizio, R., Tiercelin, J.J., Zanchetta, G., and Zeqollari, Z. Lake Ohrid, Albania, provides an exceptional multi-proxy record of environmental changes during the last glacial–interglacial cycle. 287, (2010). 116127.Google Scholar
Martrat, B., Grimalt, J.O., Lopez-Martinez, C., Chaco, I., Sierro, F.J., Flores, J.A., Zahn, R., Canals, M., Jason, H.C., and Hodell, D.A. Abrupt temperature changes in the Western Mediterranean over the past 250,000 years. Science 306, (2004). 17621765.Google Scholar
Martrat, B., Grimalt, J.O., Shackleton, N.J., Deabreu, L., Hutterly, M.A., and Stocker, T.F. Four climate cycles of recurring deep and surface water destabilizations on the Iberian Margin. Science 317, 5837 (2007). 502507.Google Scholar
McDermott, F., Schwarcz, H., Rowe, J.P. Leng, M.J. Isotopes in speleothemes. Isotopes in paleoenvironmental research vol 10, (2006). 185218.CrossRefGoogle Scholar
McManus, J.F., Bond, G.C., Broecker, W.S., Johnsen, S., Labeyrie, L., and Higgins, S. High-resolution climate records from the North Atlantic during the last interglacial. Nature 371, (1994). 326329.Google Scholar
McManus, J.F., Oppo, D.W., and Cullen, J.L. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, (1999). 971975.Google Scholar
McManus, J.F., Oppo, D.W., Keigwin, L.D., Cullen, J.L., and Bond, G.C. Thermohaline circulation and prolonged interglacial warmth in the North Atlantic. Quaternary Research 58, (2002). 1721.Google Scholar
Méliéres, M.A., Rossignol-Strick, M., and Malaize, B. Relation between low latitude insolation and δ18O change of atmospheric oxygen for the last 200 kyrs, as revealed by Mediterranean sapropels. Geophysical Research Letters 24, (1997). 12351238.CrossRefGoogle Scholar
Mickler, P.J., Stern, L.A., and Banner, J.L. Large kinetic isotope effects in modern speleothems. GSA Bulletin 118, (2006). 6581.Google Scholar
Mühlinghaus, C., Scholz, D., and Mangini, A. Modelling fractionation of stable isotopes in stalagmites. Geochimica et Cosmochimica Acta 73, (2009). 72757289.CrossRefGoogle Scholar
Mussi, M., Leone, G., and Nardi, I. Isotopic composition of natural waters from the Alpi Apuane-Garfagnana area, northern Tuscany, Italy. Mineralogica Petrographica Acta 41, (1998). 163178.Google Scholar
Oppo, D.W., Keigwin, L.D., and McManus, J.F. Persistent suborbital climate variability in marine isotope stage 5 and Termination II. Paleoceanography 16, (2001). 280292.Google Scholar
Oppo, D.W., McManus, J.F., and Cullen, J.L. Evolution and demise of the Last Interglacial warmth in the subpolar North Atlantic. Quaternary Science Reviews 25, (2006). 32683277.CrossRefGoogle Scholar
Oster, J.L., Montanez, I.P., Guilderson, T.P., Sharp, W.D., and Banner, J.L. Modeling speleothem δ13C variability in a central Sierra Nevada cave using 14C and 87Sr/86Sr. Geochimica et Cosmochimica Acta 74, (2010). 52285242.Google Scholar
Pandeli, E., Bagnoli, P., and Negri, M. The Fornovolasco schists of the Apuan Alps (Northern Tuscany, Italy): A new hypothesis for their stratigraphic setting. Bollettino Società Geologica 123, (2004). 5366.Google Scholar
Piccini, L., Pranzini, G., Tedici, L., and Forti, P. Le risorse idriche dei complessi carbonatici del comprensorio apuo-versiliese. Quaderni di Geologia Applicata 6, (1999). 6178.Google Scholar
Piccini, L., Zanchetta, G., Drysdale, R.N., Hellstrom, J.C., Isola, I., Fallick, A.E., Leone, G., Doveri, M., Mussi, M., Mantelli, F., Molli, G., Lotti, L., Roncioni, A., Regattieri, E., Meccheri, M., and Vaselli, L. The environmental features of the Monte Corchia cave system (Apuan Alps, central Italy) and their effects on speleothem growth. International Journal of Speleology 37, (2008). 153172.Google Scholar
Rasmussen, T.L., Thomsen, E., Kuijpers, A., and Wastegård, S. Late warming and early cooling of the sea surface in the Nordic seas during MIS 5e (Eemian Interglacial). Quaternary Science Reviews 22, (2003). 809821.CrossRefGoogle Scholar
Regattieri, E., Isola, I., Zanchetta, G., Drysdale, R.N., Hellstrom, J.C., and Baneschi, I. Stratigraphy, petrography and chronology of speleothem deposition at Tana che Urla (Lucca, Italy): Paleoclimatic implications. Geografia Fisica e Dinamica del Quaternario 35, (2012). 141152.Google Scholar
Regattieri, E., Zanchetta, G., Drysdale, R.N., Isola, I., Hellstrom, J.C., and Dallai, L. Late-glacial to Holocene trace element record (Ba, Mg, Sr) from Corchia Cave (Apuan Alps, central Italy): Paleoenvironmental implications. Journal of Quaternary Science 29, (2014). 381392.Google Scholar
Richards, D.A., and Dorale, J.A. Uranium-series chronology and environmental applications of speleothems. Reviews in Mineralogy and Geochemistry 52, (2003). 407460.Google Scholar
Romanek, C.S., Grossman, E.L., and Morse, J.W. Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta 56, (1992). 419430.Google Scholar
Rossignol-Strick, M. African monsoons, as immediate climate response to orbital insolation. Nature 304, (1983). 4648.Google Scholar
Rossignol-Strick, M. Mediterranean Quaternary sapropels, an immediate response of the African monsoon to variation of insolation. Palaeogeography, Palaeoclimatology, Palaeoecology 49, (1985). 237263.CrossRefGoogle Scholar
Rudzka, D., McDemott, F., Baldini, L.M., Fleitmann, D., Moreno, A., and Stoll, H. The coupled δ13C-radiocarbon systematics of three Late Glacial/early Holocene speleothems; insights into soil and cave processes at climatic transitions. Geochimica et Cosmochimica Acta 75, (2011). 43214339.Google Scholar
Sánchez Gõni, M.E., Turon, J.-L., Eynaud, F., and Shackleton, N.J. High resolution palynological record off the Iberian margin: Direct land–sea correlation for the Last Interglacial complex. Earth and Planetary Science Letters 171, (1999). 123137.Google Scholar
Sanchez-Goni, M.F. Introduction to climate and vegetation in Europe during MIS5. The climate of the past interglacial. Developments in quaternary science 7, (2005). 197205.Google Scholar
Scholz, D., Hoffmann, D.L., Hellstrom, J., and Bronk Ramsey, C. A comparison of different methods for speleothem age modelling. Quaternary Geochronology 14, (2012). 94104.Google Scholar
Sprovieri, R., Di Stefano, E., Incarbona, A., and Oppo, D.W. Suborbital climate variability during Marine Isotopic Stage 5 in the central Mediterranean basin: Evidence from calcareous plankton record. Quaternary Science Reviews 25, (2006). 23322342.Google Scholar
Tremaine, D.M., Froelich, P.N., and Wang, Y. Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system. Geochimica et Cosmochimica Acta 75, (2011). 49294950.Google Scholar
Tzedakis, P.C., Raynaud, D., McManus, J.F., Berger, A., Brovkin, V., and Kiefer, T. Interglacial diversity. Nature Geoscience 2, (2009). 751755.Google Scholar
Vergnaud-Grazzini, C., Ryan, W.B.F., and Cita, M.B. Stable isotope fractionation, climate change and episodic stagnation in the Eastern Mediterranean during the late Quaternary. Marine Micropaleontology 2, (1977). 353370.Google Scholar
Vogel, H., Zanchetta, G., Sulpizio, R., Wagner, B., and Nowaczyk, N. A tephrostratigraphic record for the last glacial–interglacial cycle from Lake Ohrid, Albania and Macedonia. Journal of Quaternary Science 25, (2009). 320338.Google Scholar
Wainer, K., Genty, D., Daeron, M., Bar-Matthews, M., Vonhof, H., Dublyansky, Y., Pons-Branchu, E., Thoma, L., van Calsteren, P., Quiunif, Y., and Caillon, N. Speleothem record of the last 180 ka in Villars cave (SW France): Investigation of a large δ18O shift between MIS6 and MIS5. Quaternary Science Reviews 30, (2011). 130146.Google Scholar
Zanchetta, G., Drysdale, R.N., Hellstrom, J.C., Fallick, A.E., Isola, I., Gagan, M., and Pareschi, M.T. Enhanced rainfall in the western Mediterranean during deposition of sapropel S1: Stalagmite evidence from Corchia Cave (Central Italy). Quaternary Science Reviews 26, (2007). 279286.Google Scholar
Zhang, J., Quay, P.D., and Wilbur, D.O. Carbon isotope fractionation during gas-water exchange and dissolution of CO2 . Geochimica et Cosmochimica Acta 59, (1995). 107114.Google Scholar
Zhornyak, L.V., Zanchetta, G., Drysdale, R.N., Hellstrom, J.C., Isola, I., Regattieri, E., Piccini, L., Baneschi, I., and Couchoud, I. Stratigraphic evidence for a “pluvial phase” between ca 8200 and 7100 ka from Renella cave (Central Italy). Quaternary Science Reviews 30, (2011). 409417.Google Scholar