Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T05:44:07.491Z Has data issue: false hasContentIssue false

The complexity of millennial-scale variability in southwestern Europe during MIS 11

Published online by Cambridge University Press:  20 January 2017

Dulce Oliveira*
Affiliation:
EPHE, PSL Research University, Laboratoire Paléoclimatologie et Paléoenvironnements Marins, F-33615 Pessac, France Univ. Bordeaux, EPOC, UMR 5805, F-33615 Pessac, France Divisão de Geologia e Georecursos Marinhos, Instituto Português do Mar e da Atmosfera (IPMA), Avenida de Brasília 6, 1449-006 Lisboa, Portugal CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Stephanie Desprat
Affiliation:
EPHE, PSL Research University, Laboratoire Paléoclimatologie et Paléoenvironnements Marins, F-33615 Pessac, France Univ. Bordeaux, EPOC, UMR 5805, F-33615 Pessac, France
Teresa Rodrigues
Affiliation:
Divisão de Geologia e Georecursos Marinhos, Instituto Português do Mar e da Atmosfera (IPMA), Avenida de Brasília 6, 1449-006 Lisboa, Portugal CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Filipa Naughton
Affiliation:
Divisão de Geologia e Georecursos Marinhos, Instituto Português do Mar e da Atmosfera (IPMA), Avenida de Brasília 6, 1449-006 Lisboa, Portugal CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
David Hodell
Affiliation:
Godwin Laboratory for Palaeoclimate Research, Department of Earth Sciences, University of Cambridge, UK
Ricardo Trigo
Affiliation:
Instituto Dom Luiz, Universidade de Lisboa, 1749-016 Lisboa, Portugal
Marta Rufino
Affiliation:
Divisão de Geologia e Georecursos Marinhos, Instituto Português do Mar e da Atmosfera (IPMA), Avenida de Brasília 6, 1449-006 Lisboa, Portugal CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Cristina Lopes
Affiliation:
Divisão de Geologia e Georecursos Marinhos, Instituto Português do Mar e da Atmosfera (IPMA), Avenida de Brasília 6, 1449-006 Lisboa, Portugal CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Fatima Abrantes
Affiliation:
Divisão de Geologia e Georecursos Marinhos, Instituto Português do Mar e da Atmosfera (IPMA), Avenida de Brasília 6, 1449-006 Lisboa, Portugal CCMAR, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Maria Fernanda Sánchez Goni
Affiliation:
EPHE, PSL Research University, Laboratoire Paléoclimatologie et Paléoenvironnements Marins, F-33615 Pessac, France Univ. Bordeaux, EPOC, UMR 5805, F-33615 Pessac, France
*
*Corresponding author. EPHE, PSL Research University, Laboratoire Paléoclimatologie et Paléoenvironnements Marins, F-33615 Pessac, France. E-mail address:[email protected](D. Oliveira)

Abstract

Climatic variability of Marine Isotope Stage (MIS) 11 is examined using a new high-resolution direct land—sea comparison from the SW Iberian margin Site U1385. This study, based on pollen and biomarker analyses, documents regional vegetation, terrestrial climate and sea surface temperature (SST) variability. Suborbital climate variability is revealed by a series of forest decline events suggesting repeated cooling and drying episodes in SW Iberia throughout MIS 11. Only the most severe events on land are coeval with SST decreases, under larger ice volume conditions. Our study shows that the diverse expression (magnitude, character and duration) of the millennial-scale cooling events in SW Europe relies on atmospheric and oceanic processes whose predominant role likely depends on baseline climate states. Repeated atmospheric shifts recalling the positive North Atlantic Oscillation mode, inducing dryness in SW Iberia without systematical SST changes, would prevail during low ice volume conditions. In contrast, disruption of the Atlantic meridional overturning circulation (AMOC), related to iceberg discharges, colder SST and increased hydrological regime, would be responsible for the coldest and driest episodes of prolonged duration in SW Europe.

Type
Research Article
Copyright
Copyright © University of Washington 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R., ágústsdóttir, A.M., 2005. The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews 24, 11231149 Google Scholar
Amore, F.O., Flores, J.A., Voelker, A.H.L. Lebreiro, S.M., Palumbo, E., Sierro, F.J., 2012. A middle Pleistocene northeast Atlantic coccolithophore record: paleoclimatology and paleoproductivity aspects. Marine Micropaleontology 90-91, 4459. http://dx.doi.org/10.1016/j.marmicro.2012.03.006.CrossRefGoogle Scholar
Anav, A., Mariotti, A., 2011. Sensitivity of natural vegetation to climate change in the Euro-Mediterranean area. Climate Research 46, 277292. http://dx.doi.org/10.3354/cr00993.Google Scholar
Bard, E., Rostek, F., Turon, J.L., Gendreau, S., 2000. Hydrological impact of Heinrich events in the subtropical northeast Atlantic. Science 289 (5483), 13211324. http://dx.doi.org/10.1126/science.289.5483.1321.Google Scholar
Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G., Thornalley, D., 2015. Icebergs not the trigger for North Atlantic cold events. Nature 520, 333336. http://dx.doi.org/10.1038/nature14330.Google Scholar
Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J., Lancelot, Y., 1994. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth and Planetary Science Letters 126, 91108.Google Scholar
Bauch, H.A., 2012. Interglacial climates and the Atlantic meridional overturning circulation: is there an Arctic controversy? Quaternary Science Reviews 63, 122. http://dx.doi.org/10.1016/j.quascirev.2012.11.023.Google Scholar
Bennett, K.D., 2000. Psimpoll and Pscomb: Computer Programs for Data Plotting and Analysis. Quaternary Geology, Earth Sciences, Uppsala University, Uppsala, Sweden. Software available on the internet at http://www.kv.geo.uu.se.Google Scholar
Berger, A., 1978. Long-term variations of daily insolation and Quaternary climatic changes. Journal of Atmospheric Science 35, 23622367.2.0.CO;2>CrossRefGoogle Scholar
Billups, K., Chaisson, W., Worsnopp, M., Thunell, R., 2004. Millennial-scale fluctuations in subtropical northwestern Atlantic surface ocean hydrography during the mid-Pleistocene. Paleoceanography 19 (2), PA2017. http://dx.doi.org/10.1029/2003pa000990.CrossRefGoogle Scholar
Birks, H., Birks, H., 1980. Quaternary Palaeoecology. Edward Arnold, London.Google Scholar
Blanco Castro, E., Casado Gonzalez, M.A., Costa Tenori, o M., Escribano Bombín, R., García Antón, M., Génova Fuster, M., Gómez Manzaneque, F., Moreno Sáiz, J.C., Morla Juaristi, C., Regato Pajares, P., Sáiz Ollero, H., 1997. Los bosques ibéricos: una Interpretación Geobotánica. Editorial Planeta, Barcelona, p. 572.Google Scholar
Candy, I., Schreve, D.C., Sherriff, J., Tye, G.J., 2014. Marine Isotope Stage 11: Palaeoclimates, palaeoenvironments and its role as an analogue for the current interglacial. Earth-Science Reviews 128, 1851. http://dx.doi.org/10.1016/j.earscirev.2013.09.006.Google Scholar
Chabaud, L., Sánchez Goñi, M.F., Desprat, S., Rossignol, L., 2014. Land-sea climatic variability in the eastern North Atlantic subtropical region over the last 14,200 years: atmospheric and oceanic processes at different timescales. The Holocene 24, 787797. http://dx.doi.org/10.1177/0959683614530439.CrossRefGoogle Scholar
Cheddadi, R., Lamb, H.F., Guiot, J., van der Kaars, S., 1998. Holocene climatic change in Morocco: a quantitative reconstruction from pollen data. Climate Dynamics 14, 883890. http://dx.doi.org/10.1007/s003820050262.CrossRefGoogle Scholar
Clark, P.U., Hostetler, S.W., Pisias, N.G., Schmittner, A., Meissner, K.J., 2007. Mechanisms for a ∼7-kyr climate and sea-level oscillation during Marine Isotope Stage 3. In: Schmittner, A., Chiang, J., Hemming, S. (Eds.), Ocean Circulation: Mechanisms and Impacts. American Geophysical Union, Geophysical Monograph 173, Washington, D.C., pp. 209246.Google Scholar
Colville, E.J., Carlson, A.E., Beard, B.L., Hatfield, R.G., Stoner, J.S., Reyes, A.V., Ullman, D.J., 2011. Sr-Nd-Pb isotope evidence for ice-sheet presence on southern Greenland during the Last Interglacial. Science 333, 620623. http://dx.doi.org/10.1126/science.1204673.Google Scholar
Combourieu-Nebout, N., Peyron, O., Dormoy, I., Desprat, S., Beaudouin, C., Kotthoff, U., Marret, F., 2009. Rapid climatic variability in the west Mediterranean during the last 25 000 years from high resolution pollen data. Climate of the Past 5, 503521. http://dx.doi.org/10.5194/cp-5-503-2009.CrossRefGoogle Scholar
Combourieu-Nebout, N., Turon, J.-L., Zahn, R., Capotondi, L., Londeix, L., Pahnke, K., 2002. Enhanced aridity and atmospheric high-pressure stability over the western Mediterranean during the North Atlantic cold events of the past 50 ky. Geology 30, 863866.Google Scholar
Cortina, A., Sierro, F.J., Flores, J.A., Martrat, B., Grimalt, J.O., 2015. The response of SST to insolation and ice sheet variability from MIS 3 to MIS 11 in the northwestern Mediterranean Sea (Gulf of Lions). Geophysical Research Letters 42, 10, 366-10, 374. http://dx.doi.org/10.1002/2015GL065539.Google Scholar
De Abreu, L., Abrantes, F., Shackleton, N.J., Tzedakis, P.C., McManus, J.F., Oppo, D.W., Hall, M.A., 2005. Ocean climate variability in the eastern North Atlantic during interglacial Marine Isotope Stage 11: a partial analogue to the Holocene? Paleoceanography 20, 115. http://dx.doi.org/10.1029/2004PA001091.CrossRefGoogle Scholar
De Beaulieu, J.L., Andrieu-Ponel, V., Reille, M., Grüger, E., Tzedakis, C., Svobodova, H., 2001. An attempt at correlation between the Velay pollen sequence and the Middle Pleistocene stratigraphy from central Europe. Quaternary Science Reviews 20, 15931602. http://dx.doi.org/10.1016/S0277-3791(01)00027-0.Google Scholar
De Vernal, A., Hillaire-Marcel, C., 2008. Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320, 16221625. http://dx.doi.org/10.1126/science.1153929.Google Scholar
Desprat, S., 2005. Reponses climatiques marines et continentales du Sud-Ouest de l’Europe lors des derniers interglaciaires et des entrees en glaciations. PhD thesis. Bordeaux University, France, 282 pp.Google Scholar
Desprat, S., Combourieu-Nebout, N., Essallami, L., Sicre, M.A., Dormoy, I., Peyron, O., Siani, G., Bout Roumazeilles, V., Turon, J.L., 2013. Deglacial and Holocene vegetation and climatic changes in the southern central Mediterranean from a direct land-sea correlation. Climate of the Past 9, 767787. http://dx.doi.org/10.5194/cp-9-767-2013.Google Scholar
Desprat, S., Díaz Fernandez, P.M., Coulon, T., Ezzat, L., Pessarossi-Langlois, J., Gil, L., Morales-Molino, C., SánchezGoñi, M.F., 2015. Pinus nigra (European black pine) as the dominant species of the last glacial pinewoods in south-western to central Iberia: a morphological study of modern and fossil pollen. Journal of Biogeography 42, 19982009. http://dx.doi.org/10.1111/jbi.12566.CrossRefGoogle Scholar
Desprat, S., SánchezGoñi, M.F., Naughton, F., Turon, J.-L., Duprat, J., Malaize, B., Cortijo, E., Peypouquet, J.-P., 2007. Climate variability of the last five isotopic interglacials: direct land-sea-ice correlation from the multiproxy analysis of North-Western Iberian margin deep-sea cores. In: Sirocko, F., Litt, T., Claussen, M., SánchezGoñi, M.F. (Eds.), The Climate of Past Interglacials, Developments in Quaternary Science. Elsevier, pp. 375386.Google Scholar
Desprat, S., SánchezGoñi, M.F., McManus, J.F., Duprat, J., Cortijo, E., 2009. Millennial-scale climatic variability between 340000 and 270000 years ago in SW Europe: evidence from a NW Iberian margin pollen sequence. Climate of the Past 5, 5372. http://dx.doi.org/10.5194/cp-5-53-2009.Google Scholar
Desprat, S., SánchezGoñi, M.F., Turon, J.L., McManus, J.F., Loutre, M.F., Duprat, J., Malaize, B., Peyron, O., Peypouquet, J.P., 2005. Is vegetation responsible for glacial inception during periods of muted insolation changes? Quaternary Science Reviews 24, 13611374. http://dx.doi.org/10.1016/j.quascirev.2005.01.005.Google Scholar
Dickson, A.J., Leng, M.J., Maslin, M.A., 2008. Mid-depth South Atlantic Ocean circulation and chemical stratification during MIS-10 to 12: implications for atmospheric CO2. Climate of the Past 4, 333344. http://dx.doi.org/10.5194/cp-4-333-2008.Google Scholar
Dupont, L.M., Wyputta, U., 2003. Reconstructing pathways of aeolian pollen transport to the marine sediments along the coastline of SW Africa. Quaternary Science Reviews 22, 157174 Google Scholar
Dutton, A., Carlson, A.E., Long, A.J., Milne, G.A., Clark, P.U., De Conto, R., Horton, B.P., Rahmstorf, S., Raymo, M.E., 2015. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349. http://dx.doi.org/10.1126/science.aaa4019.Google Scholar
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, N., Hodell, D., Piotrowski, A.M., 2012. Evolution of ocean temperature and ice volume through the Mid- Pleistocene climate transition. Science 377, 704709. http://dx.doi.org/10.1126/science.1221294.Google Scholar
Expedition 339 Scientists, The Expedition 339 Scientists, 2013. Site U1385. In: Stow, D.A.V., Hernandez-Molina, F.J., Alvarez Zarikian, C.A. (Eds.), Proceedings IODP 339. Integrated Ocean Drilling Program Management International, Inc., Tokyo. In: http://dx.doi.org/10.2204/iodp.proc.339.103.201.Google Scholar
Fiúza, A.F.G., 1983. Upwelling patterns off Portugal. In: Suess, E., Thiede, J. (Eds.), Coastal Upwelling, its Sediment Record. Plenum, New York, pp. 8598.Google Scholar
Fiúza, A.F.G., Macedo, M.E., Guerreiro, M.R., 1982. Climatological space and time variation of the Portuguese coastal upwelling. Oceanologica Acta 5 (1), 3140.Google Scholar
Fletcher, W.J., Debret SánchezGoñi, M.F., 2012. Mid-Holocene emergence of a low-frequency millennial oscillation in western Mediterranean climate: implications for past dynamics of the North Atlantic atmospheric westerlies. The Holocene 23, 153166. http://dx.doi.org/10.1177/095968361246078.Google Scholar
Fletcher, W.J., SánchezGoñi, M.F., 2008. Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quaternary Research 70, 451464. http://dx.doi.org/10.1016/j.yqres.2008.07.002.Google Scholar
Fletcher, W.J., SánchezGoñi, M.F., Peyron, O., Dormoy, I., 2010. Abrupt climate changes of the last deglaciation detected in a Western Mediterranean forest record. Climate of the Past 6, 245264. http://dx.doi.org/10.5194/cp-6-245-2010.Google Scholar
Gao, X., Giorgi, F., 2008. Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global and Planetary Change 62, 195209. http://dx.doi.org/10.1016/j.gloplacha.2008.02.002.CrossRefGoogle Scholar
Gouveia, C., Trigo, R.M., DaCamara, C.C., Libonati, R., Pereira, J.M.C., 2008. The North Atlantic oscillation and European vegetation dynamics. International Journal of Climatology 28, 18351847.Google Scholar
Gimeno, L., Nieto, R., Trigo, R.M., Vicente-Serrano, S.M., Lopez-Moreno, J.I., 2010. Where does the Iberian Peninsula moisture come From? An answer based on a lagrangian approach. Journal of Hydrometeorology 11, 421436. http://dx.doi.org/10.1175/2009JHM1182.1.Google Scholar
Giorgi, F., 2006. Climate change hot-spots. Geophysical Research Letters 33, L08707. http://dx.doi.org/10.1029/2006GL025734.Google Scholar
Grousset, F.E., Pujol, C., Labeyrie, L., Auffret, G., Boelaert, A., 2000. Were the North Atlantic Heinrich events triggered by the behavior of the European ice sheets? Geology 28 (2), 123126.2.0.CO;2>CrossRefGoogle Scholar
Hall, I.R., Becker, J., 2007. Deep western boundary current variability in the subtropical northwest Atlantic Ocean during Marine Isotope Stages 12-10. Geochemistry, Geophysics, Geosystems 8, 114. http://dx.doi.org/10.1029/2006GC001518.Google Scholar
Heusser, L., Balsam, W.L., 1977. Pollen distribution in the northeast Pacific Ocean. Quaternary Research 7, 4562. http://dx.doi.org/10.1016/0033-5894(77)90013-8.Google Scholar
Hodell, D., Crowhurst, S., Skinner, L., Tzedakis, P.C., Margari, V., Channell, J.E.T., Kamenov, G., MacLachlan, S., Rothwell, G., 2013a. Response of Iberian Margin sediments to orbital and suborbital forcing over the past 420 ka. Paleoceanography 28, 185199. http://dx.doi.org/10.1002/palo.20017.Google Scholar
Hodell, D., Lourens, L., Crowhurst, S., Konijnendijk, T., Tjallingii, R., Jimenez-Espejo, F., Skinner, L., Tzedakis, P.C., 2015. A reference time scale for site U1385 (Shackleton site) on the SW Iberian margin. Global and Planetary Change 1385, 4964. http://dx.doi.org/10.1016/j.gloplacha.2015.07.002.Google Scholar
Hodell, D.A., Channell, J.E.T., Curtis, J.H., Romero, O.E., Rohl, U., 2008. Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (∼640 ka)? Paleoceanography 23, 116. http://dx.doi.org/10.1029/2008PA001591.Google Scholar
Hodell, D.A., Lourens, L., Stow, D.V., Hernandez-Molina, J., Alvarez Zarikian, C., Shackleton Site Project Members, 2013b. The “Shackleton Site” (IODP site U1385) on the Iberian margin. Proceedings of the Integrated Ocean Drilling Program 16, 1319. http://dx.doi.org/10.5194/sd-16-13-2013.Google Scholar
Hurrell, J.W., 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676679. http://dx.doi.org/10.1126/science.269.5224.676.Google Scholar
IPCC, 2013. Climate change 2013: the physical science basis. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 1535. http://dx.doi.org/10.1017/CBO9781107415324.Google Scholar
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J.M., Chappellaz, J., Fischer, H., Gallet, J.C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J.P., Stenni, B., Stocker, T.F., Tison, J.L., Werner, M., Wolff, E.W., 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793796. http://dx.doi.org/10.1126/science.1141038.CrossRefGoogle ScholarPubMed
Juggins, S., 2009. Package “rioja” — Analysis of Quaternary Science Data. The Comprehensive R Archive Network.Google Scholar
Koutsodendris, A., Brauer, A., Pälike, H., Müller, U.C., Dulski, P., Lotter, A.F., Pross, J., 2011. Sub-decadal- to decadal-scale climate cyclicity during the Holsteinian interglacial (MIS 11) evidenced in annually laminated sediments. Climate of the Past 7, 987999. http://dx.doi.org/10.5194/cp-7-987-2011.Google Scholar
Koutsodendris, A., Müller, U.C., Pross, J., Brauer, A., Kotthoff, U., Lotter, A.F., 2010. Vegetation dynamics and climate variability during the Holsteinian interglacial based on a pollen record from Dethlingen (northern Germany). Quaternary Science Reviews 29, 32983307. http://dx.doi.org/10.1016/j.quascirev.2010.07.024.CrossRefGoogle Scholar
Koutsodendris, A., Pross, J., Müller, U.C., Brauer, A., Fletcher, W.J., Kühl, N., Kirilova, E., Verhagen, F.T.M., Lücke, A., Lotter, A.F., 2012. A short-term climate oscillation during the Holsteinian interglacial (MIS 11c): an analogy to the 8.2ka climatic event? Global and Planetary Change 92-93, 224235. http://dx.doi.org/10.1016/j.gloplacha.2012.05.011.Google Scholar
Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., Luterbacher, J., May, W., Trigo, R., Tsimplis, M., Ulbrich, U., Xoplaki, E., 2006. The Mediterranean climate: an overview of the main characteristics and issues. Developments in Earth and Environmental Sciences 4, 126. http://dx.doi.org/10.1016/S1571-9197(06)80003-0.CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A PlioceneePleistocene stack of 57 globally-distributed benthic δ18O records. Paleoceanography 20, PA1003. http://dx.doi.org/10.1029/2004PA001071.Google Scholar
Loidi, J., Biurrun, I., Campos, J.A., Garcıa-Mijangos, I., Herrera, M., 2007. A survey of heath vegetation of the Iberian Peninsula and Northern Morocco: a biogeographical and bioclimatic approach. Phytocoenologia 37, 341370.CrossRefGoogle Scholar
Loutre, M.F., Berger, A.L., 2003. Marine Isotope Stage 11 as an analogue for the present interglacial. Global and Planetary Change 36, 209217. http://dx.doi.org/10.1016/S0921-8181(02)00186-8.Google Scholar
Magri, D., 2012. Quaternary history of Cédrus in southern Europe. Annali Di Botanica 5766. http://dx.doi.org/10.4462/annbotrm-10022.Google Scholar
Maiorano, P., Marino, M., Balestra, B., Flores, J.-A., Hodell, D.A., Rodrigues, T., 2015. Coccolithophore variability from the Shackleton site (IODP site U1385) through MIS 16-10. Global and Planetary Change 133, 3548. http://dx.doi.org/10.1016/j.gloplacha.2015.07.009.Google Scholar
Margari, V., Skinner, L.C., Tzedakis, P.C., Ganopolski, A., Vautravers, M., Shackleton, N.J., 2010. The nature of millennial-scale climate variability during the past two glacial periods. Nature Geoscience 3, 127131 Google Scholar
Marino, M., Maiorano, P., Tarantino, F., Voelker, A., Capotondi, L., Girone, A., Lirer, F., Flores, J.A., Naafs, B.D.A., 2014. Coccolithophores as proxy of seawater changes at orbital-to-millennial scale during middle Pleistocene Marine Isotope Stages 14-9 in North Atlantic core MD01-2446. Paleoceanography 29, 518532. http://dx.doi.org/10.1002/2013PA002574.Google Scholar
Martrat, B., Grimalt, J.O., Lopez-Martinez, C., Cacho, I., Sierro, F.J., Flores, J.A., Zahn, R., Canals, M., Curtis, J.H., Hodell, D.A., 2004. Abrupt temperature changes in the western Mediterranean over the past 250,000 years. Science 306 (5702), 17621765. http://dx.doi.org/10.1126/science.1101706.Google Scholar
Martrat, B., Grimalt, J.O., Shackleton, N.J., de Abreu, L., Hutterli, M.A., Stocker, T.F., 2007. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 317, 502507. http://dx.doi.org/10.1126/science.1139994.Google Scholar
McAndrews, J.H., King, J., 1976. Pollen of the North American Quaternary: the top twenty. Geoscience and Man 15, 4149.Google Scholar
McManus, J., Oppo, D., Cullen, J., Healey, S., 2003. Marine Isotope Stage 11 (MIS 11): analog for Holocene and future climate? In: Droxler, A.W., Poore, R.Z., Burckle, L.H. (Eds.), Earth’s Climate and Orbital Eccentricity: the Marine Isotope Stage 11 Question, AGU Geophysical Monograph Series No. 137, pp. 6166.Google Scholar
McManus, J.F., Oppo, D.W., Cullen, J.L., 1999. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971974.Google Scholar
Melles, M., Brigham-Grette, J., Minyuk, P.S., Nowaczyk, N.R., Wennrich, V., De Conto, R.M., Anderson, P.M., Andreev, A.A., Coletti, A., Cook, T.L., Haltia-Hovi, E., Kukkonen, M., Lozhkin, A.V., Rosen, P., Tarasov, P., Vogel, H., Wagner, B., 2012. 2.8 million years of Arctic climate change from Lake El’gygytgyn, NE Russia. Science 337, 315320. http://dx.doi.org/10.1126/science.1222135.Google Scholar
Milker, Y., Rachmayani, R., Weinkauf, M.F.G., Prange, M., Raitzsch, M., Schulz, M., Kucera, M., 2013. Global and regional sea surface temperature trends during Marine Isotope Stage 11. Climate of the Past 9, 22312252. http://dx.doi.org/10.5194/cp-9-2231-2013.Google Scholar
Moffa-Sánchez, P., Born, A., Hall, I.R., Thornalley, D.J.R., Barker, S., 2014. Solar forcing of North Atlantic surface temperature and salinity over the past millennium. Nature Geoscience 7, 275278. http://dx.doi.org/10.1038/ngeo2094.Google Scholar
Moore, P.D., Webb, J.A., Collinson, M.E., 1991. Pollen Analysis, second ed. Blackwell scientific publication, Oxford, p. 216.Google Scholar
Mudie, P., McCarthy, F., 2006. Marine palynology: potentials for onshore—offshore correlation of Pleistocene—Holocene records. Transactions of the Royal Society of South Africa 61, 139157.Google Scholar
Müller, P.J., Kirst, G., Ruhland, G., Von Storch, I., Rosell-Mele, A., 1998. Calibration of the alkenone paleotemperature index Uk’37- based on core-tops from the eastern South Atlantic and the global ocean (60° N-60°S). Geochimica et Cosmochimica Acta 62, 17571772.Google Scholar
Naughton, F., Sánchez Goñi, M.F., Desprat, S., Turon, J.L., Duprat, J., Malaize, B., Joli, C., Cortijo, E., Drago, T., Freitas, M.C., 2007. Present-day and past (last 25 000 years) marine pollen signal off western Iberia. Marine Micropaleontology 62, 91114. http://dx.doi.org/10.1016/j.marmicro.2006.07.006.Google Scholar
Naughton, F., Sánchez Goñi, M.F., Kageyama, M., Bard, E., Cortijo, E., Desprat, S., Duprat, J., Malaize, B., Joli, C., Rostek, F., Turon, J.-L., 2009. Wet to dry climatic trend in north western Iberia within Heinrich events. Earth and Planetary Science Letters 284, 329342.Google Scholar
Oort, A.H., Vander Haar, T.H., 1976. On the observed annual cycle in the ocean-atmosphere heat balance over the northern hemisphere. Journal of Physical Oceanography 6, 781800.Google Scholar
Oppo, D.W., McManus, J.F., Cullen, J.L., 1998. Abrupt climate events 500,000 to 340,000 years ago: evidence from subpolar North Atlantic sediments. Science 279, 13351338.Google Scholar
Ortega, P., Lehner, F., Swingedouw, D., Masson-Delmotte, V., Raible, C.C., Casado, M., Yiou, P., 2015. A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523, 7174. http://dx.doi.org/10.1038/nature14518.CrossRefGoogle ScholarPubMed
Palumbo, E., Flores, J.-A., Perugia, C., Petrillo, Z., Voelker, A.H.L., Amore, F.O., 2013. Millennial scale coccolithophore paleoproductivity and surface water changes between 445 and 360ka (Marine Isotope Stages 12/11) in the Northeast Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 383-384, 2741. http://dx.doi.org/10.1016/j.palaeo.2013.04.024.Google Scholar
Peinado Lorca, M., Martinez-Parras, J.M., 1987. Castilla-La Mancha. In: Peinado Lorca, M., Rivas-Martinez, S. (Eds.), La vegetacion de Espana. Universidad de Alcala de Henares, Alcala de Henares, pp. 163196.Google Scholar
Peliz, á., Dubert, J., Santos, A.M.P., Oliveira, P.B., Le Cann, B., 2005. Winter upper ocean circulation in the western Iberian basin — fronts, eddies and poleward flows: an overview. Deep-Sea Research Part I 52 (4), 621646. http://dx.doi.org/10.1016/j.dsr.2004.11.005.Google Scholar
Peterson, G.M., 1983. Recent pollen spectra and zonal vegetation in the western USSR. Quaternary Science Reviews 2 (4), 281321.CrossRefGoogle Scholar
Pol, K., Debret, M., Masson-Delmotte, V., Capron, E., Cattani, O., Dreyfus, G., Falourd, S., Johnsen, S., Jouzel, J., Landais, A., Minster, B., Stenni, B., 2011. Links between MIS 11 millennial to sub-millennial climate variability and long term trends as revealed by new high resolution EPICA Dome C deuterium data — a comparison with the Holocene. Climate of the Past 7, 437450. http://dx.doi.org/10.5194/cp-7-437-2011.Google Scholar
Poli, M.S., Thunnel, R.C., Rio, D., 2000. Millennial-scale changes in North Atlantic deep water circulation during Marine Isotope Stages 11 and 12: linkage to Antarctic climate. Geology 28, 807810.2.0.CO;2>CrossRefGoogle Scholar
Polunin, O., Walters, M., 1985. A Guide to the Vegetation of Britain and Europe. Oxford University Press, New York, 238 pp.Google Scholar
Prentice, L.C., 1978. Modern pollen spectra from lake sediments in Finland and Finnmark, north Norway. Boreas 7, 131153 Google Scholar
Prokopenko, A.A., Bezrukova, E.V., Khursevich, G.K., Solotchina, E.P., Kuzmin, M.I., Tarasov, P.E., 2010. Climate in continental interior Asia during the longest interglacial of the past 500 000 years: the new MIS 11 records from Lake Baikal, SE Siberia. Climate of the Past 6, 3148. http://dx.doi.org/10.5194/cp-6-31-2010.CrossRefGoogle Scholar
Quezel, P., 2002. Reflexions sur l’evolution de la flore et de la vegetation au Maghreb mediterraneen. Ibis Press, Paris.Google Scholar
R Core Team, 2014. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.Google Scholar
Railsback, L.B., Gibbard, P.L., Head, M.J., Voarintsoa, N.R.G., Toucanne, S., 2015. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews 111, 94106. http://dx.doi.org/10.1016/j.quascirev.2015.01.012.Google Scholar
Raymo, M.E., Mitrovica, J.X., 2012. Collapse of polar ice sheets during the stage 11 interglacial. Nature 483, 453456. http://dx.doi.org/10.1038/nature10891.Google Scholar
Raynaud, D., Barnola, J.-M., Souchez, R., Lorrain, R., Petit, J.-R., Duval, P., Lipenkov, V.Y., 2005. Palaeoclimatology: the record for marine isotopic stage 11. Nature 436, 3940. http://dx.doi.org/10.1038/43639b.CrossRefGoogle ScholarPubMed
Reille, M., 1992. Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de botanique historique et palynologie, Marseille, p. 520.Google Scholar
Reille, M., Beaulieu, J.-L.De, Svobodova, H., Andrieu-Ponel, V., Goeury, C., 2000. Pollen analytical biostratigraphy of the last five climatic cycles from a long continental sequence from the Velay region (Massif Central, France). Journal of Quaternary Science 15, 665685.Google Scholar
Reyes, A.V., Carlson, A.E., Beard, B.L., Hatfield, R.G., Stoner, J.S., Winsor, K., Welke, B., Ullman, D.J., 2014. South Greenland ice-sheet collapse during marine isotope stage 11. Nature 510, 525528. http://dx.doi.org/10.1038/nature13456.Google Scholar
Roberts, D.L., Karkanas, P., Jacobs, Z., Marean, C.W., Roberts, R.G., 2012. Melting ice sheets 400,000 yr ago raised sea level by 13 m: past analogue for future trends. Earth and Planetary Science Letters 357-358, 226237. http://dx.doi.org/10.1016/j.epsl.2012.09.006.Google Scholar
Roche, D.M., Wiersma, A.P., Renssen, H., 2010. A systematic study of the impact of freshwater pulses with respect to different geographical locations. Climate Dynamics 34, 9971013. http://dx.doi.org/10.1007/s00382-009-0578-8.Google Scholar
Rodrigues, T., Grimalt, J.O., Abrantes, F., Flores, J.A., Lebreiro, S., 2009. Holocene interdependences of changes in sea surface temperature, productivity and fluvial inputs in the Iberian continental shelf (Tagus mud patch). Geochemistry, Geophysics, Geosystems 10 (7). http://dx.doi.org/10.1029/2008GC002367.Google Scholar
Rodrigues, T., Voelker, A.H.L., Grimalt, J.O., Abrantes, F., Naughton, F., 2011. Iberian Margin sea surface temperature during MIS 15 to 9 (580-300 ka): glacial suborbital variability versus interglacial stability. Paleoceanography 26. http://dx.doi.org/10.1029/2010PA001927.PA1204.Google Scholar
Rohling, E.J., Grant, K., Bolshaw, M., Roberts, A.P., Siddall, M., Hemleben, C., Kucera, M., 2009. Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nature Geoscience 2, 500504. http://dx.doi.org/10.1038/ngeo557.Google Scholar
Roucoux, K.H., Tzedakis, P.C., De Abreu, L., Shackleton, N.J., 2006. Climate and vegetation changes 180,000 to 345,000 years ago recorded in a deep-sea core off Portugal. Earth and Planetary Science Letters 249, 307325. http://dx.doi.org/10.1016/j.epsl.2006.07.005.Google Scholar
Sánchez Goñi, M.F., Bard, E., Landais, A., Rossignol, L., D’Errico, F., 2013. Airesea temperature decoupling in western Europe during the last interglacialeglacial transition. Nature Geoscience 6, 837841. http://dx.doi.org/10.1038/ngeo1924.Google Scholar
Sánchez Goni, M.F., Cacho, I., Turon, J., Guiot, J., Sierro, F., Peypouquet, J., Grimalt, J., Shackleton, N., 2002. Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region. Climate Dynamics 19, 95105. http://dx.doi.org/10.1007/s00382-001-0212-x.Google Scholar
Sánchez Goni, M.F., Eynaud, F., Turon, J.L., Shackleton, N.J., 1999. High resolution palynological record off the Iberian margin: direct land-sea correlation for the last interglacial complex. Earth and Planetary Science Letters 171, 123137.Google Scholar
Sánchez Goñi, M.F., Landais, A., Fletcher, W.J., Naughton, F., Desprat, S., Duprat, J., 2008. Contrasting impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews 27, 11361151. http://dx.doi.org/10.1016/j.quascirev.2008.03.003.Google Scholar
Sánchez Goñi, M.F., Loutre, M.F., Crucifix, M., Peyron, O., Santos, L., Duprat, J., Malaize, B., Turon, J.L., Peypouquet, J.P., 2005. Increasing vegetation and climate gradient in western Europe over the last glacial inception (122e110 ka): data-model comparison. Earth and Planetary Science Letters 231, 111130. http://dx.doi.org/10.1016/j.epsl.2004.12.010.CrossRefGoogle Scholar
Sánchez Goñi, M.F., Turon, J.L., Eynaud, F., Gendreau, S., 2000. European climatic response to millennial-scale changes in the atmosphere-ocean system during the last glacial period. Quaternary Research 54, 394403. http://dx.doi.org/10.1006/qres.2000.2176.Google Scholar
Sánchez-Goñi, M.F., Landais, A., Cacho, I., Duprat, J., Rossignol, L., 2009. Contrasting intrainterstadial climatic evolution between high and middle North Atlantic latitudes: a close-up of Greenland interstadials 8 and 12. Geochemistry, Geophysics, Geosystems 10. http://dx.doi.org/10.1029/2008GC002369.Google Scholar
Santini, M., Collalti, A., Valentini, R., 2014. Climate change impacts on vegetation and water cycle in the Euro-Mediterranean region, studied by a likelihood approach. Regional Environmental Change 14, 14051418. http://dx.doi.org/10.1007/s10113-013-0582-8.Google Scholar
Shackleton, N., Fairbanks, R., Chiu, T., Parrenin, F., 2004. Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Л14C. Quaternary Science Reviews 23, 15131522. http://dx.doi.org/10.1016/j.quascirev.2004.03.006.Google Scholar
Shackleton, N.J., Hall, M.A., Vincent, E., 2000. Phase relationships between millennial-scale events 64,000-24,000 years ago. Paleoceanography 15, 565569. http://dx.doi.org/10.1029/2000PA000513.Google Scholar
Shackleton, N.J., Sánchez-Goñi, M.F., Pailler, D., Lancelot, Y., 2003. Marine Isotope Substage 5e and the Eemian interglacial. Global and Planetary Change 36, 151155. http://dx.doi.org/10.1016/S0921-8181(02)00181-9.Google Scholar
Skinner, L.C., Shackleton, N.J., 2005. An Atlantic lead over Pacific deep-water change across Termination I: implications for the application of the Marine Isotope Stage stratigraphy. Quaternary Science Reviews 24, 571580. http://dx.doi.org/10.1016/j.quascirev.2004.11.008.Google Scholar
Sousa, P., Barriopedro, D., Trigo, R.M., Ramos, A.M., Nieto, R., Gimeno, L., Turkman, K.F., Liberato, M.L.R., 2015b. Impact of Euro-Atlantic blocking patterns in Iberia precipitation using a novel high resolution dataset. Climate Dynamics, 119. http://dx.doi.org/10.1007/s00382-015-2718-7.Google Scholar
Sousa, P., Trigo, R.M., Pereira, M., Bedia, J., Gutierrez, J.M., 2015a. Different approaches to model future burnt area in the Iberian Peninsula. Agricultural and Forest Meteorology 202, 1125. http://dx.doi.org/10.1016/j.agrformet.2014.11.018.Google Scholar
Stein, R., Hefter, J., Grützner, J., Voelker, A., Naafs, B.D.A., 2009. Variability of surface water characteristics and Heinrich-like events in the Pleistocene midlatitude North Atlantic ocean: biomarker and XRD records from IODP site U1313 (MIS 16-9). Paleoceanography 24, PA2203. http://dx.doi.org/10.1029/2008pa001639.Google Scholar
Trigo, R.M., Pozo-Vázquez, D., Osborn, T.J., Castro-Díez, Y., Gamiz-Fortis, S., Esteban-Parra, M.J., 2004. North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. International Journal of Climatology 24, 925944. http://dx.doi.org/10.1002/joc.1048.Google Scholar
Tye, G.J., Sherriff, J., Candy, I., Coxon, P., Palmer, A., McClymont, E.L., Schreve, D.C., 2016. The δ18O stratigraphy of the Hoxnian lacustrine sequence at Marks Tey, Essex, UK: implications for the climatic structure of MIS 11 in Britain. Journal of Quaternary Science 31, 7592. http://dx.doi.org/10.1002/jqs.2840.Google Scholar
Tzedakis, P.C., Channell, J.E.T., Hodell, D.A., Kleiven, H.F., Skinner, L.C., 2012. Determining the natural length of the current interglacial. Nature Geoscience 5 (2), 138142.Google Scholar
Tzedakis, P.C., Roucoux, K.H., De Abreu, L., Shackleton, N.J., 2004. The duration of forest stages in southern Europe and interglacial climate variability. Science 306, 22312235. http://dx.doi.org/10.1126/science.1102398.Google Scholar
Tzedakis, P.C., 2010. The MIS 11 — MIS 1 analogy, southern European vegetation, atmospheric methane and the “early anthropogenic hypothesis”. Climate of the Past 6, 131144. http://dx.doi.org/10.5194/cp-6-131-2010.Google Scholar
Tzedakis, P.C., Andrieu, V., De Beaulieu, J.L., Birks, H.J.B., Crowhurst, S., Follieri, M., Hooghiemstra, H., Magri, D., Reille, M., Sadori, L., Shackleton, N.J., Wijmstra, T.A., 2001. Establishing a terrestrial chronological framework as a basis for bio-stratigraphical comparisons. Quaternary Science Reviews 20, 15831592. http://dx.doi.org/10.1016/S0277-3791(01)00025-7.Google Scholar
Tzedakis, P.C., Palike, H., Roucoux, K.H., de Abreu, L., 2009. Atmospheric methane, southern European vegetation and low-mid latitude links on orbital and millennial timescales. Earth and Planetary Science Letters 277, 307317. http://dx.doi.org/10.1016/j.epsl.2008.10.027.Google Scholar
Villanueva, J., Grimalt, J.O., Cortijo, E., Vidal, L., Labeyriez, L., 1997a. A biomarker approach to the organic matter deposited in the North Atlantic during the last climatic cycle. Geochimica et Cosmochimica Acta 61, 46334646.Google Scholar
Villanueva, J., Pelejero, C., Grimalt, J.O., 1997b. Clean-up procedures for the unbiased estimation of C37 alkenone sea surface temperatures and terrigenous n-alkane inputs in paleoceanography. Journal of Chromatography A 757, 145151.Google Scholar
Voelker, A.H.L. Rodrigues, T., Billups, K., Oppo, D., McManus, J., Stein, R., Hefter, J., Grimalt, J.O., 2010. Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes (MIS 9-14) and their implications for the thermohaline circulation. Climate of the Past 6, 531552. http://dx.doi.org/10.5194/cp-6-531-2010.Google Scholar
Walter, H., Breckle, S.-W., 1989. Ecological Systems of the Geobiosphere: 3 Temperate and Polar Zonobiomes of Northern Eurasia. Springer-Verlag, Berlin Heidelberg.Google Scholar
Walter, K., Graf, H.-F., 2002. On the changing nature of the regional connection between the North Atlantic oscillation and sea surface temperature. Journal of Geophysical Research 107 (D17), 4338. http://dx.doi.org/10.1029/2001JD000850.Google Scholar
Wijmstra, T.A., Smit, A., 1976. Palynology of the middle part (30e78 m) of the 120m deep section in Northern Greece (Macedonia). Acta Botanica Neerlandica 25, 297312.Google Scholar
Wood, S.N., 2006. Generalized Additive Models: an Introduction with R. Chapman and Hall/CRC Press.Google Scholar
Wright, J.H.E., McAndrews, J.H., van Zeist, W., 1967. Modern pollen rain in western Iran, and its relation to plant geography and Quaternary vegetational history. Journal of Ecology 415443.Google Scholar
Yin, Q.Z., Berger, A., 2012. Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years. Climate Dynamics 38, 709724. http://dx.doi.org/10.1007/s00382-011-1013-5.Google Scholar
Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects Models and Extensions in Ecology with R, Statistics for Biology and Health. Springer New York, New York, NY. http://dx.doi.org/10.1007/978-0-387-87458-6.Google Scholar