Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T18:54:57.416Z Has data issue: false hasContentIssue false

Comparison of settlement-era vegetation reconstructions for STEPPS and REVEALS pollen–vegetation models in the northeastern United States

Published online by Cambridge University Press:  07 April 2020

Mathias Trachsel*
Affiliation:
Department of Geography, University of Wisconsin–Madison, Madison, Wisconsin53706, USA
Andria Dawson
Affiliation:
Department of General Education, Mount Royal University, Calgary, AlbertaT3E 6K6, Canada
Christopher J. Paciorek
Affiliation:
Department of Statistics, University of California, Berkeley, Berkeley, California94720, USA
John W. Williams
Affiliation:
Department of Geography, University of Wisconsin–Madison, Madison, Wisconsin53706, USA Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin53706, USA
Jason S. McLachlan
Affiliation:
Department of Biological Sciences, University of Notre Dame, South Bend, Indiana46556, USA
Charles V. Cogbill
Affiliation:
Harvard Forest, Harvard University, Petersham, Massachusetts01366, USA
David R. Foster
Affiliation:
Harvard Forest, Harvard University, Petersham, Massachusetts01366, USA
Simon J. Goring
Affiliation:
Department of Geography, University of Wisconsin–Madison, Madison, Wisconsin53706, USA Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin53706, USA
Stephen T. Jackson
Affiliation:
Department of the Interior Southwest Climate Adaptation Science Center, U.S. Geological Survey, Tucson, Arizona, USA; and Department of Geosciences, University of Arizona, Tucson, Arizona85721, USA
W. Wyatt Oswald
Affiliation:
Harvard Forest, Harvard University, Petersham, Massachusetts01366, USA Institute for Liberal Arts and Interdisciplinary Studies, Emerson College, Boston, Massachusetts02116, USA
Bryan N. Shuman
Affiliation:
Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming. USA
*
*Corresponding author at: Talstrasse 10, 3174Thoerishaus, Switzerland. E-mail address: [email protected] (M. Trachsel).

Abstract

Reconstructions of prehistoric vegetation composition help establish natural baselines, variability, and trajectories of forest dynamics before and during the emergence of intensive anthropogenic land use. Pollen–vegetation models (PVMs) enable such reconstructions from fossil pollen assemblages using process-based representations of taxon-specific pollen production and dispersal. However, several PVMs and variants now exist, and the sensitivity of vegetation inferences to PVM selection, variant, and calibration domain is poorly understood. Here, we compare the reconstructions, parameter estimates, and structure of a Bayesian hierarchical PVM, STEPPS, both to observations and to REVEALS, a widely used PVM, for the pre–Euro-American settlement-era vegetation in the northeastern United States (NEUS). We also compare NEUS-based STEPPS parameter estimates to those for the upper midwestern United States (UMW). Both PVMs predict the observed macroscale patterns of vegetation composition in the NEUS; however, reconstructions of minor taxa are less accurate and predictions for some taxa differ between PVMs. These differences can be attributed to intermodel differences in structure and parameter estimates. Estimates of pollen productivity from STEPPS broadly agree with estimates produced for use in REVEALS, while comparison between pollen dispersal parameter estimates shows no significant relationship. STEPPS parameter estimates are similar between the UMW and NEUS, suggesting that STEPPS parameter estimates are transferable between floristically similar regions and scales.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

§

These authors contributed equally to this work.

References

REFERENCES

Bodmer, H., 1922. Ueber den Windpollen. Natur und Technik 3, 294298.Google Scholar
Bonan, G.B., 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 14441449.CrossRefGoogle ScholarPubMed
Bradshaw, R.H.W., Webb, T., 1985. Relationships between contemporary pollen and vegetation data from Wisconsin and Michigan, USA. Ecology 66, 721737.CrossRefGoogle Scholar
Brugam, R.B., 1978. Pollen indicators of land-use change in southern Connecticut. Quaternary Research 9, 349362.CrossRefGoogle Scholar
Calcote, R., 1995. Pollen source area and pollen productivity: evidence from forest hollows. Journal of Ecology 83, 591602.CrossRefGoogle Scholar
Chaput, M.A., Gajewski, K., 2018. Relative pollen productivity estimates and changes in Holocene vegetation cover in the deciduous forest of southeastern Quebec, Canada. Botany 96, 299317.CrossRefGoogle Scholar
Clark, J.S., Carpenter, S.R., Barber, M., Collins, S., Dobson, A., Foley, J.A., Lodge, D.M., et al. ., 2001. Ecological forecasts: an emerging imperative. Science 293, 657660.CrossRefGoogle ScholarPubMed
Cogbill, C.V., Burk, J., Motzkin, G., 2002. The forests of presettlement New England, USA: spatial and compositional patterns based on town proprietor surveys. Journal of Biogeography 29, 12791304.CrossRefGoogle Scholar
Curtis, J.T., 1959. The Vegetation of Wisconsin. University of Wisconsin Press, Madison.Google Scholar
Dawson, A., Cao, X., Chaput, M., Hopla, E., Li, F., Edwards, M., Fyfe, R., et al. ., 2018. Finding the magnitude of human-induced Northern Hemisphere land-cover transformation between 6 and 0.2 ka BP. Past Global Changes Magazine 26, 3435.CrossRefGoogle Scholar
Dawson, A., Paciorek, C.J., Goring, S., Jackson, S.T., McLachlan, J.S., Williams, J.W. 2019. Quantifying trends and uncertainty in prehistoric forest composition. Journal of Ecology 100.Google ScholarPubMed
Dawson, A., Paciorek, C.J., McLachlan, J.S., Goring, S., Williams, J.W., Jackson, S.T., 2016. Quantifying pollen-vegetation relationships to reconstruct ancient forests using 19th-century forest composition and pollen data. Quaternary Science Reviews 137, 156175.CrossRefGoogle Scholar
Dietze, M.C., 2017. Ecological Forecasting. Princeton University Press, Princeton, NJ.Google Scholar
Dietze, M.C., Fox, A., Beck-Johnson, L.M., Betancourt, J.L., Hooten, M.B., Jarnevich, C.S., Keitt, T.H., et al. , 2018. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proceedings of the National Academy of Sciences USA 115, 14241432.CrossRefGoogle ScholarPubMed
Durham, O.C., 1946. The volumetric incidence of atmospheric allergens. III. Rate of fall of pollen grains in still air. Journal of Allergy 17, 7078.CrossRefGoogle Scholar
Dyakowska, J., 1936. Researches on the rapidity of falling down of pollen of some trees. Bulletin international de l'Academie des sciences de Cracovie. Classe des sciences naturelle et mathematiques. Serie B, Sciences Naturelles 1, 155168.Google Scholar
Efron, B., Hastie, T., 2016. Empirical Bayes. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Eisenhut, G., 1961. Untersuchungen ueber die Morphologie und Oekologie der Pollenkoerner heimischer und fremdlaendischer Waldbaeume. Paul Parey, Hamburg.Google Scholar
Fang, Y., Ma, C., Bunting, M.J., 2019. Novel methods of estimating relative pollen productivity: a key parameter for reconstruction of past land cover from pollen records. Progress in Physical Geography, Earth and Environment 43, 731 753.CrossRefGoogle Scholar
Foster, D.R., Clayden, S., Orwig, D.A., Hall, B., 2002. Oak, chestnut and fire: climatic and cultural controls of long- term forest dynamics in New England, USA. Journal of Biogeography 29, 13591379.CrossRefGoogle Scholar
Fyfe, R. M., Woodbridge, J., Roberts, N., 2015. From forest to farmland: pollen-inferred land cover change across Europe using the pseudobiomization approach. Global Change Biology, 21, 11971212.CrossRefGoogle ScholarPubMed
Gaillard, M.J., Sugita, S., Mazier, F., Trondman, A.K., Broström, A., Hickler, T., Kaplan, J.O., et al. , 2010. Holocene land-cover reconstructions for studies on land cover-climate feedbacks. Climate of the Past 6, 483499.CrossRefGoogle Scholar
Gavin, D.G., Oswald, W.W., Wahl, E.R., Williams, J.W., 2003. A statistical approach to evaluating distance metrics and analog assignments for pollen records. Quaternary Research 60, 356367.CrossRefGoogle Scholar
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B., 2013. Bayesian Data Analysis. 3rd ed.Chapman & Hall/CRC Press, London.CrossRefGoogle Scholar
Goring, S.J., Williams, J.W., Mladenoff, D.J., Cogbill, C.V., Record, S., Paciorek, C.J., Jackson, S.J., Dietze, M.C., McLachlan, J.S., 2016. Novel and lost forests in the upper Midwestern United States, from new estimates of settlement-era composition, stem density, and biomass. PLoS ONE 11:e0151935.CrossRefGoogle ScholarPubMed
Hall, B., Motzkin, G., Foster, D.R., Syfert, M., Burk, J., 2002. Three hundred years of forest and land-use change in Massachusetts, USA. Journal of Biogeography 29, 13191335.CrossRefGoogle Scholar
Heide, K.M., Bradshaw, R., 1982. The pollen-tree relationship within forests of Wisconsin and Upper Michigan, U.S.A. Review of Palaeobotany and Palynology 36, 123.CrossRefGoogle Scholar
Hjelle, K.L., Sugita, S., 2011. Estimating pollen productivity and relevant source area of pollen using lake sediments in Norway: How does lake size variation affect the estimates? Holocene 22, 313 324.CrossRefGoogle Scholar
Jackson, S.T., 1989. Postglacial Vegetational Changes along an Elevational Gradient in the Adirondack Mountains (New York): A Study of Plant Macrofossils. University of the State of New York, State Education Department, New York State Museum, Biological Survey. Albany, NY.CrossRefGoogle Scholar
Jackson, S.T., 1990. Pollen source area and representation in small lakes of the northeastern United States. Review of Palaeobotany and Palynology 63, 5376.CrossRefGoogle Scholar
Jackson, S.T., 1994. Pollen and spores in Quaternary lake sediments as sensors of vegetation composition: theoretical models and empirical evidence. In: Traverse, A. (Ed.), Sedimentation of Organic Particles. Cambridge University Press, Cambridge, pp. 253286.CrossRefGoogle Scholar
Jackson, S.T., Kearsley, J.B., 1998. Quantitative representation of local forest composition in forest-floor pollen assemblages. Journal of Ecology 86, 474490.CrossRefGoogle Scholar
Jackson, S.T., Lyford, M.E., 1999. Pollen dispersal models in Quaternary plant ecology: assumptions, parameters, and prescriptions. Botanical Review 65, 3975.CrossRefGoogle Scholar
Jackson, S.T., Whitehead, D.R., 1991. Holocene vegetation patterns in the Adirondack Mountains. Ecology 72, 641654.CrossRefGoogle Scholar
Kujawa, E., Goring, S., Dawson, A., Booth, R., Grimm, E., Hotchkiss, S., Jackson, S., Lynch., E.A., McLachlan, J., St. Jacques, J.-M., Umbanhower, C., Williams, J., 2016.The effects of anthropogenic land cover change on pollen–vegetation relationships in the American Midwest. Anthropocene 15, 6071.CrossRefGoogle Scholar
Kuparinen, A, Markkanen, T, Riikonen, H., Vesala, T., 2007. Modeling air-mediated dispersal of spores, pollen and seeds in forested areas. Ecological Modelling 208, 177188.CrossRefGoogle Scholar
LeBoeuf, K. A., 2014. Holocene Vegetation, Hydrology, and Fire in the North-Central Adirondacks of New York. Master's of Science thesis. Lehigh University, Bethlehem, PA.Google Scholar
Marquer, L., Gaillard, M.-J., Sugita, S., Poska, A., Trondman, A.-K., Mazier, F., Nielsen, A.B., et al. , 2017. Quantifying the effects of land use and climate on Holocene vegetation in Europe. Quaternary Science Reviews 171, 2037.CrossRefGoogle Scholar
Nielsen, A.B., 2004. Modelling pollen sedimentation in Danish lakes at c.AD 1800: an attempt to validate the POLLSCAPE model. Journal of Biogeography 31, 16931709.CrossRefGoogle Scholar
Niklas, K., 1984. The motion of windborne pollen grains around conifer ovulate cones—- implications on wind pollination. American Journal of Botany 71, 356374.CrossRefGoogle Scholar
OpenMP Architecture Review Board, 2008. OpenMP Application Program Interface. Version 3.0 [computer software]. www.openmp.org/mp-documents/spec30.pdf. Accessed 15 May 2018.Google Scholar
Oswald, W.W., Foster, D., Shuman, B., Doughty, E., Faison, E.K., Hall, B., Hansen, B.C.S., Lindbladh, M., Marroquin, A., Truebe, S., 2018. Subregional variability in the response of New England vegetation to postglacial climate change. Journal of Biogeography 45, 23752388.CrossRefGoogle Scholar
Paciorek, C.J., Goring, S.J., Thurman, A.L., Cogbill, C.V., Williams, J.W., Mladenoff, D.J., Peters, J.A., Zhu, J., McLachlan, J.S., 2016. Statistically-estimated tree composition for the northeastern United States at Euro-American settlement (vol 11, e0150087, 2016). PLoS ONE 12, e0170835.CrossRefGoogle Scholar
Paciorek, C.J., McLachlan, J.S., 2008. Expanded Technical Report: Mapping Ancient Forests: Bayesian Inference for Spatio-Temporal Trends in Forest Composition using the Fossil Pollen Proxy Record. Harvard University Biostatistics Working Paper Series, Paper 88. Harvard University, Cambridge, MA.Google Scholar
Paciorek, C.J., McLachlan, J.S., 2009. Mapping ancient forests: Bayesian inference for spatio-temporal trends in forest composition using the fossil pollen proxy record. Journal of the American Statistical Association 104, 608622.CrossRefGoogle ScholarPubMed
Parsons, R.W., Prentice, I.C., 1981. Statistical approaches to R-values and the pollen-vegetation relationship. Review of Palaeobotany and Palynology 32, 127152.CrossRefGoogle Scholar
Pirzamanbein, B., Lindstrom, J., Poska, A., Gaillard, M.-J., 2018. Modelling spatial compositional data: reconstructions of past land cover and uncertainties. Spatial Statistics 24, 1431.CrossRefGoogle Scholar
Pirzamanbein, B., Lindstrom, J., Poska, A., Sugita, S., Trondman, A.-K., Fyfe, R., Mazier, F., et al. ., 2014. Creating spatially continuous maps of past land cover from point estimates: a new statistical approach applied to pollen data. Ecological Complexity 20, 127141.CrossRefGoogle Scholar
Prentice, I.C., 1985. Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quaternary Research 23, 7686.CrossRefGoogle Scholar
Prentice, I.C., 1988. Records of vegetation in time and space: the principles of pollen analysis. In: Huntley, B., Webb, T. (Eds.), Vegetation History, Handbook of Vegetation Science. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 1742.CrossRefGoogle Scholar
Prentice, I.C., Parsons, R.W., 1983. Maximum-likelihood linear calibration of pollen spectra in terms of forest composition. Biometrics 39, 10511057.CrossRefGoogle Scholar
Prentice, I.C., Webb, T., 1986. Pollen percentages, tree abundances and the Fagerlind effect. Journal of Quaternary Science 1, 3543.CrossRefGoogle Scholar
Roberts, N., Fyfe, R.M., Woodbridge, J., Gaillard, M.-J., Davis, B.A.S., Kaplan, J.O., Marquer, L., et al. , 2018. Europe's lost forests: a pollen-based synthesis for the last 11,000 years. Scientific Reports 8, 716.CrossRefGoogle ScholarPubMed
Rue, H., Martino, S., Chopin, N., 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society, Series B, Statistical Methodology 71, 319392.CrossRefGoogle Scholar
Russell, E.W.B., 1983. Indian-set fires in the forests of the northeastern United States. Ecology 64, 7888.CrossRefGoogle Scholar
Schoonmaker, P. K., Foster, D. R., 1991. Some implications of paleoecology for contemporary ecology. Botanical Review, 57, 204245.CrossRefGoogle Scholar
Seddon, A.W.R., Mackay, A.W., Baker, A.G., Birks, H.J.B., Breman, E., Buck, C.E., Ellis, E.C., et al. , 2014. Looking forward through the past: identification of 50 priority research questions in palaeoecology. Journal of Ecology 102, 256267.CrossRefGoogle Scholar
Sugita, S., 1994. Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. Journal of Ecology 82, 881897.CrossRefGoogle Scholar
Sugita, S., 2007a. Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. The Holocene 17, 229241.CrossRefGoogle Scholar
Sugita, S., 2007b. Theory of quantitative reconstruction of vegetation II: all you need is LOVE. The Holocene 17, 243257.CrossRefGoogle Scholar
Sugita, S., Parshall, T., Calcote, R., Walker, K., 2010. Testing the Landscape Reconstruction Algorithm for spatially explicit reconstruction of vegetation in northern Michigan and Wisconsin. Quaternary Research 74, 289300.CrossRefGoogle Scholar
Sutton, O.G., 1953. Micrometerology: A Study of Physical Processes in the Lowest Layers of the Earth's Atmosphere. McGraw-Hill, New York.Google Scholar
Taylor, K.E., Stouffer, R. J., Meehl, G. A., G.A., 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93, 485498.CrossRefGoogle Scholar
Theuerkauf, M., Couwenberg, J., Kuparinen, A., Liebscher, V., 2016. A matter of dispersal: REVEALSinR introduces state-of-the-art dispersal models to quantitative vegetation reconstruction. Vegetation History and Archaeobotany 25, 541553.CrossRefGoogle Scholar
Theuerkauf, M., Kuparinen, A., Joosten, H., 2012. Pollen productivity estimates strongly depend on assumed pollen dispersal. The Holocene 23, 1424.CrossRefGoogle Scholar
Thompson, J.R., Carpenter, D.N., Cogbill, C.V., Foster, D.R., 2013. Four centuries of change in northeastern United States forests. PLoS ONE 8, e72540.CrossRefGoogle ScholarPubMed
Trondman, A.-K, Gaillard, M.-J., Mazier, F., Sugita, S., Fyfe, R., Nielsen, A.B., Twiddle, C., et al. ., 2015. Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling. Global Change Biology 21, 676697.CrossRefGoogle ScholarPubMed
Trondman, A.-K., Gaillard, M.-J., Sugita, S., Bjorkman, L., Greisman, A., Hultberg, T., Lageras, P., Lindbladh, M., Mazier, F., 2016. Are pollen records from small sites appropriate for REVEALS model-based quantitative reconstructions of past regional vegetation? An empirical test in southern Sweden. Vegetation History and Archaeobotany 25, 131151.CrossRefGoogle Scholar
Watanabe, S., 2010. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of Machine Learning Research 11, 35713594.Google Scholar
Webb, T., Howe, S.E., Bradshaw, R.H.W., Heide, K.M., 1981. Estimating plant abundances from pollen percentages: the use of regression analysis. Review of Palaeobotany and Palynology 34, 269300.CrossRefGoogle Scholar
Whitehead, D.R., Jackson, S.T., 1990. The Regional Vegetational History of the High Peaks (Adirondack Mountains), New York. Bulletin No. 478. New York State Museum, Albany, NY.CrossRefGoogle Scholar
Whitney, G., DeCant, J., 2001. Government land office surveys and other early surveys. In: Egan, D., Howell, E.A. (Eds.), The Historical Ecology Handbook. Island Press, Washington, DC, pp. 147172.Google Scholar
Williams, J.W., Grimm, E.C., Blois, J.L., Charles, D.F., Davis, E.B., Goring, S.J., Graham, R.W., et al. , 2018. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quaternary Research 89, 156177.CrossRefGoogle Scholar
Supplementary material: PDF

Trachsel et al. Supplementary Materials

Trachsel et al. Supplementary Materials

Download Trachsel et al. Supplementary Materials(PDF)
PDF 12.4 MB