Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T23:03:48.596Z Has data issue: false hasContentIssue false

The collapse of megafaunal populations in southeastern Brazil

Published online by Cambridge University Press:  17 August 2017

Marco F. Raczka*
Affiliation:
Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901, USA
Mark B. Bush
Affiliation:
Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901, USA
Paulo Eduardo De Oliveira
Affiliation:
Department of Sedimentary and Environmental Geology, Institute of Geosciences, University of São Paulo, São Paulo 05508-080, Brazil Department of Botany, The Field Museum of Natural History, Chicago, Illinois 60605, USA
*
*Corresponding author at: Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901, USA. E-mail address: [email protected] (M.F. Raczka).

Abstract

Whether humans or climate change caused the extinction of megafaunal populations is actively debated. Caves in the Lagoa Santa provide mixed assemblages of megafauna and human remains; however, it remains uncertain the extent to which humans and megafauna interacted or overlapped temporally. Here we present the first paleoecological record from lowland South America that tracks the decline of megafauna and its ecological implications. We provide a data set for pollen, charcoal, and Sporormiella, from two lakes in southeastern Brazil that span the last 23,000 yr. The data showed reduced abundances of Sporormiella and an inferred megafaunal population decline that began 18,000 yr ago, with the functional extinction occurring between 12,000 and 11,500 yr ago. Population declines coincided with wet events. The age of the final megafaunal decline is within the range of the first human occupation of the region. Our data are consistent with climate causing the population collapse, with humans preventing population recovery and inducing extinction. We did not observe some of the ecological repercussions documented at other sites and attributed to the megafaunal extinction. Habitat-specific ecological consequences of the extinction add to the heterogeneity of late Pleistocene and early Holocene landscapes.

Type
Tribute to Daniel Livingstone and Paul Colinvaux
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alroy, J., 2001. A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 292, 18931896.CrossRefGoogle ScholarPubMed
Augustine, D.J., McNaughton, S.J., 1998. Ungulate effects on the functional species composition of plants communities: herbivore selective and plant tolerance. Journal of Wildlife Management 62, 11651183.Google Scholar
Bakker, E.S., Gill, J.L., Johnson, C.N., Vera, F.W.M., Sandom, C.J., Asner, G.P., Svenning, J.C., 2016. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proceedings of the National Academy of Sciences of the United States of America 113, 847855.Google Scholar
Barberi, M., Salgado-Labouriau, M.L., Suguio, K., 2000. Paleovegetation and paleoclimate of “Vereda de Águas Emendadas,” central Brazil. Journal of South American Earth Sciences 13, 241254.Google Scholar
Barnosky, A.D., Koch, P.L., Feranec, R.S., Wing, S.L., Shabel, A.B., 2004. Assessing the causes of Late Pleistocene extinctions on the continents. Science 306, 7075.Google Scholar
Barnosky, A.D., Lindsey, E.L., 2010. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quaternary International 217, 1029.CrossRefGoogle Scholar
Bartlett, L.J., Williams, D.R., Prescott, G.W., Balmford, A., Green, R.E., Eriksson, A., Valdes, P.J., Singarayer, J.S., Manica, A., 2016. Robustness despite uncertainty: regional climate data reveal the dominant role of humans in explaining global extinctions of Late Quaternary megafauna. Ecography 39, 152161.Google Scholar
Behling, H., 1995. Investigations into the late Pleistocene and Holocene history of vegetation and climate in Santa Catarina (S Brazil). Vegetation History and Archaeobotany 4, 127152.CrossRefGoogle Scholar
Behling, H., 1997a. Late Quaternary vegetation, climate and fire history from the tropical mountain region of Morro de Itapeva, SE Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 129, 407422.Google Scholar
Behling, H., 1997b. Late Quaternary vegetation, climate and fire history of the Araucaria forest and campos region from Serra Campos Gerais, Paraná State (South Brazil). Review of Palaeobotany and Palynology 97, 109121.Google Scholar
Behling, H., 2002. South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 177, 1927.Google Scholar
Bell, A., 1983. Dung Fungi: An Illustrated Guide to Coprophilous Fungi in New Zealand. Victoria University Press, Wellington.Google Scholar
Berbert-Born, M., 2002. Carste de Lagoa Santa, MG – Berço da paleontologia e da espeleologia brasileira. In: Schobbenhaus, C., Campos, D.A., Queiroz, E.T., Winge, M., Berbert-Born, M.L.C. (Eds.), Sítios Geológicos e Paleontológicos do Brasil 1. DNPM/CPRM, Comissão Brasileira de Sítios Geológicos e Paleobiológicos (SIGEP), Brasília, pp. 415430.Google Scholar
Bernal, J.P., Cruz, F.W., Stríkis, N.M., Wang, X., Deininger, M., Catunda, M.C.A., Ortega-Obregón, C., Cheng, H., Edwards, R.L., Auler, A.S., 2016. High-resolution Holocene South American monsoon history recorded by a speleothem from Botuverá Cave, Brazil. Earth and Planetary Science Letters 450, 186196.Google Scholar
Borrero, L.A., Za, M., Miotti, L., Massone, M., 1998. The Pleistocene–Holocene Transition and human occupations in the southern cone of South America. Quaternary International 49/50, 191199.Google Scholar
Brook, B.W., Bowman, D.M.J.S., 2004. The uncertain blitzkrieg of Pleistocene megafauna. Journal of Biogeography 31, 517523.Google Scholar
Bryan, A.L., Casamiquela, R.M., Cruxent, J.M., Gruhn, R., Ochsenius, C., 1978. An El Jobo mastodon kill at Taima-taima, Venezuela. Science 200, 12751277.Google Scholar
Burney, D.A., Robinson, G.S., Burney, L.P., 2003. Sporormiella and the late Holocene extinctions in Madagascar. Proceedings of the National Academy of Sciences of the United States of America 100, 1080010805.CrossRefGoogle ScholarPubMed
Bush, M.B., Hansen, B.C.S., Rodbell, D.T., Seltzer, G.O., Young, K.R., León, B., Abbott, M.B., Silman, M.R., Gosling, W.D., 2005. A 17 000-year history of Andean climate and vegetation change from Laguna de Chochos, Peru. Journal of Quaternary Science 20, 703714.CrossRefGoogle Scholar
Cárdenas, M.L., Gosling, W.D., Sherlock, S.C., Poole, I., Pennington, R.T., Mothes, P., 2011. The response of vegetation on the Andean flank in western Amazonia to Pleistocene climate change. Science 331, 10551058.Google Scholar
Cartelle, C., 1994. Tempo passado: mamíferos do Pleistoceno em Minas Gerais. Acesita, Belo Horizonte, Brazil.Google Scholar
Cartelle, C., De Iuliis, G., Pujos, F., 2008. A new species of Megalonychidae (Mammalia, Xenarthra) from the Quaternary of Poço Azul (Bahia, Brazil). Comptes Rendus Palevol 7, 335346.Google Scholar
Cartelle, C., Hartwig, W.C., 1996. A new extinct primate among the Pleistocene megafauna of Bahia, Brazil. Proceedings of the National Academy of Sciences of the United States of America 93, 64056409.Google Scholar
Cione, A.L., Eduardo, P.T., Soibelzon, L., 2003. The Broken Zig-Zag: Late Cenozoic large mammal and tortoise extinction in South America. Revista del Museo Argentino de Ciencias Naturales 5, 119.Google Scholar
Cione, A.L., Tonni, E.P., Soibelzon, L., 2009. Did humans cause the Late Pleistocene-Early Holocene mammalian extinctions in South America in a context of shrinking open areas? In: Haynes, G. (Ed.), American Megafaunal Extinction at the End of the Pleistocene. Springer, Dordrecht, the Netherlands, pp. 125144.Google Scholar
Cochrane, M.A., 2009. Fire in the tropics. In: Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics. Springer, Berlin, pp. 123.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., Moreno, E., 1999. Amazon Pollen Manual and Atlas. Hardwood Academic, Amsterdam.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., Moreno, J.E., Miller, M.C., Bush, M.B., 1996. A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274, 8588.Google Scholar
Coltorti, M., Ficcarelli, G., Jahren, H., Espinosa, M.M., Rook, L., Torre, D., 1998. The last occurrence of Pleistocene megafauna in the Ecuadorian Andes. Journal of South American Earth Sciences 11, 581586.Google Scholar
Cooper, A., Turney, C., Hughen, K.A., Barry, W., McDonald, H.G., Bradshaw, C.J.A., 2015. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 18.Google Scholar
Correa-Metrio, A., Bush, M.B., Hodell, D.A., Brenner, M., Escobar, J., Guilderson, T., 2012. The influence of abrupt climate change on the ice-age vegetation of the Central American lowlands. Journal of Biogeography 39, 497509.CrossRefGoogle Scholar
Cruz, F.W., Burns, S.J., Jercinovic, M., Karmann, I., Sharp, W.D., Vuille, M., 2007. Evidence of rainfall variations in southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochimica et Cosmochimica Acta 71, 22502263.CrossRefGoogle Scholar
Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., 2006. Reconstruction of regional atmospheric circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems. Earth and Planetary Science Letters 248, 495507.CrossRefGoogle Scholar
Dantas, M.A.T., de Oliveira Porpino, K., Bauermann, S.G., do Nascimento Prata, A.P., Cozzuol, M.A., Kinoshita, A., Oliveira Barbosa, J.H., Baffa, O., 2011. Megafauna do Pleistoceno Superior de Sergipe, Brasil: Registros Taxonômicos e Cronológicos. Revista Brasileira de Paleontologia 14, 311320.Google Scholar
Dantas, M.A.T., Zucon, M.H., Ribeiro, A.M., 2005. Megafauna pleistocênica da Fazenda Elefante, Gararu, Sergipe, Brasil. Geociências 24, 277287.Google Scholar
Davis, O.K., 1987. Spores of the dung fungus Sporormiella: increased abundance in historic sediments and before Pleistocene megafaunal extinction. Quaternary Research 28, 290294.Google Scholar
Davis, O.K., Shafer, D.S., 2006. Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeography, Palaeoclimatology, Palaeoecology 237, 4050.Google Scholar
De Oliveira, P.E., 1992. A Palynological Record of Late Quaternary Vegetational and Climatic Change in Southeastern Brazil. PhD dissertation, Ohio State University, Columbus.Google Scholar
Diamond, J.M., 1989. Quaternary megafaunal extinctions: variations on a theme by Paganini. Journal of Archaeological Science 16, 167175.Google Scholar
Dillehay, T.D., 1999. The Late Pleistocene cultures of South America. Evolutionary Anthropology 7, 206216.Google Scholar
Dillehay, T.D., Ocampo, C., Saavedra, J., Sawakuchi, A.O., Vega, R.M., Pino, M., Collins, M.B., et al., 2015. New archaeological evidence for an early human presence at Monte Verde, Chile. PLoS ONE 10, e0145471. http://dx.doi.org/10.1371/journal.pone.0141923.Google Scholar
Dillehay, T.D., Ramírez, C., Pino, M., Collins, M.B., Rossen, J., Pino-Navarro, J.D., 2008. Monte Verde: seaweed, food, medicine, and the peopling of South America. Science 320, 784786.Google Scholar
Doughty, C.E., Faurby, S., Svenning, J.-C., 2016. The impact of the megafauna extinctions on savanna woody cover in South America. Ecography 39, 213222.Google Scholar
Doughty, C.E., Wolf, A., Malhi, Y., 2013. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nature Geoscience 6, 761764.Google Scholar
Dutra, G.M., Horta, L.S., Berbert-Born, M.L., 1998. Levantamento Espeleológico. In: APA Carste de Lagoa Santa: patrimônio espeleológico, histórico e cultural, Vol 3. CPRM/IBAMA, Bela Horizonte, Brazil, pp. 1–68.Google Scholar
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. 4th ed. Blackburn Press, Caldwell, NJ.Google Scholar
Fariña, R.A., Castilla, R., 2007. Earliest evidence for human-megafauna interaction in the Americas. British Archaeological Reports International Series 1627, 3134.Google Scholar
Feathers, J., Kipnis, R., Piló, L., Arroyo-Kalin, M., Coblentz, D., 2010. How old is Luzia? Luminescence dating and stratigraphic integrity at Lapa Vermelha, Lagoa Santa, Brazil. Geoarchaeology 25, 395436.Google Scholar
Feeley, K.E., Terborgh, J.W., 2005. The effects of herbivore density on soil nutrients and tree growth in tropical forest fragments. Ecology 86, 116124.Google Scholar
Feranec, R.S., Miller, N.G., Lothrop, J.C., Graham, R.W., 2011. The Sporormiella proxy and end-Pleistocene megafaunal extinction: a perspective. Quaternary International 245, 333338.Google Scholar
Fiedel, S., 2009. Sudden deaths: the chronology of terminal Pleistocene megafaunal extinction terminal Pleistocene extinction. In: Haynes, G. (Ed.), American Megafaunal Extinction at the End of the Pleistocene. Springer, Dordrecht, the Netherlands, pp. 2137.CrossRefGoogle Scholar
Firestone, R.B., West, A., Kennett, J.P., Becker, L., Bunch, T.E., Revay, Z.S., Schultz, P.H., et al., 2007. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of the National Academy of Sciences of the United States of America 104, 16016–16021.Google Scholar
Garreaud, R.D., 2000. Cold air incursions over subtropical South America: mean structure and dynamics. Monthly Weather Review 128, 25442559.2.0.CO;2>CrossRefGoogle Scholar
Ghilardi, A.M., Fernandes, M.A., Bichuette, M.E., 2011. Megafauna from the Late Pleistocene-Holocene deposits of the Upper Ribeira karst area, southeast Brazil. Quaternary International 245, 369378.Google Scholar
Gill, J.L., Mclauchlan, K.K., Skibbe, A.M., Goring, S., Zirbel, C.R., Williams, J.W., 2013. Linking abundances of the dung fungus Sporormiella to the density of bison: implications for assessing grazing by megaherbivores in palaeorecords. Journal of Ecology 101, 11251136.Google Scholar
Gill, J.L., Williams, J.W., Jackson, S.T., Donnelly, J.P., Schellinger, G.C., 2012. Climatic and megaherbivory controls on late-glacial vegetation dynamics: a new, high-resolution, multi-proxy record from Silver Lake, Ohio. Quaternary Science Reviews 34, 6680.Google Scholar
Gill, J.L., Williams, J.W., Jackson, S.T., Lininger, K.B., Robinson, G.S., 2009. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 11001103.Google Scholar
Giombini, M.I., Bravo, S.P., Tosto, D.S., 2016. The key role of the largest extant neotropical frugivore (Tapirus terrestris) in promoting admixture of plant genotypes across the landscape. Biotropica 48, 499508.Google Scholar
Gribel, R., Hay, J.D., 1993. Pollination ecology of Caryocar brasiliense (Caryocaraceae) in central Brazil cerrado vegetation. Journal of Tropical Ecology 9, 199211.Google Scholar
Guimarães, P.R., Galetti, M., Jordano, P., 2008. Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate. PLoS ONE 3, e1745. http://dx.doi.org/10.1371/journal.pone.0001745.Google Scholar
Haberzettl, T., Corbella, H., Fey, M., Janssen, S., Lücke, A., Mayr, C., Ohlendorf, C., Schäbitz, F., Schleser, G.H., Wille, M., 2007. Lateglacial and Holocene wet–dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. Holocene 17, 297310.CrossRefGoogle Scholar
Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 4. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.Google Scholar
Harrison, S.P., Sanchez Goni, M.F., 2010. Global patterns of vegetation response to millennial-scale variability and rapid climate change during the last glacial period. Quaternary Science Reviews 29, 29572980.Google Scholar
Hermanowski, B., da Costa, M.L., Behling, H., 2012. Environmental changes in southeastern Amazonia during the last 25,000 yr revealed from a paleoecological record. Quaternary Research 77, 138148.Google Scholar
Hooghiemstra, H., Van der Hammen, T., 2004. Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. Philosophical Transactions of the Royal Society B: Biological Sciences 359, 173181.Google Scholar
Hubbe, A., Hubbe, M., Neves, W., 2007. Early Holocene survival of megafauna in South America. Journal of Biogeography 34, 16421646.Google Scholar
Hubbe, A., Hubbe, M., Neves, W.A., 2009. New Late-Pleistocene dates for the extinct megafauna of Lagoa Santa, Brazil. Current Research in the Pleistocene 26, 154156.Google Scholar
Hubbe, A., Hubbe, M., Neves, W.A., 2013. The Brazilian megamastofauna of the Pleistocene/Holocene transition and its relationship with the early human settlement of the continent. Earth-Science Reviews 118, 110.Google Scholar
Iob, G., Vieira, E.M., 2008. Seed predation of Araucaria angustifolia (Araucariaceae) in the Brazilian Araucaria Forest: influence of deposition site and comparative role of small and “large” mammals. Plant Ecology 198, 185196.Google Scholar
Jansen, P.A., Hirsch, B.T., Emsens, W.-J., Zamora-Gutierrez, V., Wikelski, M., Kays, R., 2012. Thieving rodents as substitute dispersers of megafaunal seeds. Proceedings of the National Academy of Sciences of the United States of America 109, 12610–12615.Google Scholar
Janzen, D.H., Martin, P.S., 1982. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215, 1927.Google Scholar
Kerr, R.A., 2007. Mammoth-killer impact gets mixed reception from earth scientists. Science 316, 12641265.Google Scholar
Kilpatrick, A.M., Briggs, C.J., Daszak, P., 2010. The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends in Ecology and Evolution 25, 109118.Google Scholar
Knapp, A.K., Blair, J.M., Briggs, J.M., Collins, S.L., Hartnett, D.C., Johnson, L.C., Towne, E.G., 1999. The keystone role of bison in North American tallgrass prairie: bison increase habitat heterogeneity and alter a broad array of plant, community, and ecosystem processes. Bioscience 49, 3950.CrossRefGoogle Scholar
Koch, P.L., Barnosky, A.D., 2006. Late Quaternary extinctions: state of the debate. Annual Review of Ecology, Evolution, and Systematics 37, 215250.Google Scholar
Ledru, M.., 1993. Late Quaternary environmental and climatic changes in central Brazil. Quaternary Research 39, 9098.Google Scholar
Ledru, M., Braga, S., Soubis, F., Fournier, M., Martin, L., Suguio, K., Turcq, B., 1996. The last 50,000 years in the Neotropics (southern Brazil): evolution of vegetation and climate. Palaeogeography, Palaeoclimatology, Palaeoecology 123, 239257.CrossRefGoogle Scholar
Ledru, M., Montade, V., Cedex, M., Cedex, M., Pratique, E., 2015. Long-term spatial changes in the distribution of the Brazilian Atlantic forest. Biotropica 48, 159169.Google Scholar
Ledru, M., Mourguiart, P., Ceccantini, G., Turcq, B., Sifeddine, A., 2002. Tropical climates in the game of two hemispheres revealed by abrupt climatic change. Geology 30, 275278.Google Scholar
Lessa, G., Cartelle, C., Faria, H.D., Gonçalves, P.R., 1998. Novos achados de mamíferos carnívoros do Pleistoceno final - Holoceno em grutas calcárias do Estado da Bahia. Acta Geológica Leopoldensia 46/47, 157169.Google Scholar
Lima-Ribeiro, M.S., Nogués-Bravo, D., Terribile, L.C., Batra, P., Diniz-Filho, J.A.F., 2013. Climate and humans set the place and time of Proboscidean extinction in late Quaternary of South America. Palaeogeography, Palaeoclimatology, Palaeoecology 392, 546556.Google Scholar
Long, A., Martin, P.S., Lagiglia, H.A., 1998. Ground sloth extinction and human occupation at Gruta del Indio, Argentina. Radiocarbon 40, 693700.CrossRefGoogle Scholar
Lopes, R.P., Buchmann, F.S.C., Caron, F., Itusarry, M.E.G.S., 2009. Barrancas Fossilíferas do Arroio Chuí, RS: Importante megafauna pleistocênica no extremo sul do Brasil. In: Winge, M., Schobbenhaus, C., Souza, C.R.G., Fernandes, A.C.S., Queiroz, E.T., Berbert-Born, M., Campos, D.A. (Eds.), Sítios Geológicos e Paleontológicos do Brasil 2. CPRM, Brasília, pp. 355362.Google Scholar
Lucas, T.P.B., Abreu, M.L., 2004. Caracterização climática dos padrões de ventos associados a eventos extremos de precipitação em Belo Horizonte-MG. Cadernos de Geografia 14, 135152.Google Scholar
Lund, P.W., 1844. Carta escripta de Lagoa Santa a 21 de abril de 1844. Revista do Instituto Histórico e Geográfico Brasileiro 6, 334342.Google Scholar
Marengo, J.A., 1995. Interannual variability of deep convection over the tropical South American sector as deduced from ISCCP C2 data. International Journal of Climatology 15, 9951010.Google Scholar
Marinho Silva, F., Cordeiro Filgueiras, C.F., Franca Barreto, A.M., Oliveira, E.V., 2010. Mamíferos do Pleistoceno Superior de Afrânio, Pernambuco, nordeste do Brasil. Quaternary and Environmental Geosciences 2, 111.Google Scholar
Martin, P.S., 1973. The discovery of America. Science 179, 969974.Google Scholar
McManus, J.F., Francois, R., Gherardi, J.-M., Keigwin, L.D., Brown-Leger, S., 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834837.CrossRefGoogle ScholarPubMed
Metcalf, J.L., Turney, C., Barnett, R., Martin, F., Bray, S.C., Vilstrup, J.T., Orlando, L., et al., 2016. Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation. Science Advances 2, e1501682. http://dx.doi.org/10.1126/sciadv.1501682.Google Scholar
Moreno, P.I., Jacobson, G.L., Lowell, T.V., Denton, G.H., 2001. Interhemispheric climate links revealed by a late-glacial cooling episode in southern Chile. Nature 409, 804808.Google Scholar
Mosimann, J.E., Martin, P.S., 1975. Simulating overkill by Paleoindians. American Scientist 63, 304313.Google Scholar
Neves, W.A., Hubbe, M., 2005. Cranial morphology of early Americans from Lagoa Santa, Brazil: implications for the settlement of the New World. Proceedings of the National Academy of Sciences of the United States of America 102, 18309–18314.Google Scholar
Neves, W.A., Pilo, L.B., 2003. Solving Lund’s dilemma: new AMS dates confirm that humans and megafauna coexisted at Lagoa Santa. Current Research in the Pleistocene 20, 5762.Google Scholar
Neves, W.A., Powell, J.F., Prous, A., Ozolins, E.G., Blum, M., 1999. Lapa Vermelha IV Hominid 1: morphological affinities of the earliest known American. Genetics and Molecular Biology 22, 461469.Google Scholar
Neves, W.A., Prous, A., González-José, R., Kipnis, R., Powell, J., 2003. Early Holocene human skeletal remains from Santana do Riacho, Brazil: implications for the settlement of the New World. Journal of Human Evolution 45, 1942.Google Scholar
Nimer, E., 1989. Climatologia do Brasil. IBGE, Departamento de Recursos Naturais e Estudos Ambientais, Rio de Janeiro, Brazil.Google Scholar
Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., 2007. The vegan Package: Community Ecology Package. R Foundation for Statistical Computing, Vienna.Google Scholar
Overpeck, J.T., Webb, R.S., Webb, T. III, 1992. Mapping eastern North American vegetation change of the past 18 ka: no-analogs and the future. Geology 20, 10711074.Google Scholar
Owen-Smith, N., 1987. Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13, 351362.Google Scholar
Parnell, A., 2016. Bchron: Radiocarbon Dating, Age-Depth Modelling, Relative Sea Level Rate Estimation, and Non-parametric Phase Modelling. R package version 4.1.1; 2015. R Foundation for Statistical Computing, Vienna.Google Scholar
Pedro, J.B., Bostock, H.C., Bitz, C.M., He, F., Vandergoes, M.J., Steig, E.J., Chase, B.M., et al., 2015. The spatial extent and dynamics of the Antarctic Cold Reversal. Nature Geoscience 9, 5155.Google Scholar
Pedro, J.B., Van Ommen, T.D., Rasmussen, S.O., Morgan, V.I., Chappellaz, J., Moy, A.D., Masson-Delmotte, V., Delmotte, M., 2011. The last deglaciation: timing the bipolar seesaw. Climate of the Past 7, 671683.Google Scholar
Pessenda, L.C.R., De Oliveira, P.E., Mofatto, M., Medeiros, V.B., Garcia, R.J.F., Aravena, R., Bendassoli, J.A., Leite, A.Z., Saad, A.R., Etchebehere, M.L., 2009. The evolution of a tropical rainforest/grassland mosaic in southeastern Brazil since 28,000 14C yr BP based on carbon isotopes and pollen records. Quaternary Research 71, 437452.Google Scholar
Pires, M.M., Galetti, M., Donatti, C.I., Pizo, M.A., Dirzo, R., Guimarães, P.R., 2014. Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction. Oecologia 175, 12471256.Google Scholar
Politis, G., Prado, J.L., Beukens, R.P., 1995. The human impact in Pleistocene-Holocene extinctions in South America: the Pampean case. In: Johnson, E. (Ed.), Ancient Peoples and Landscapes. Museum of Texas Tech University, Lubbock, pp. 187205.Google Scholar
Prado, J.L., Martinez-Maza, C., Alberdi, M.T., 2015. Megafauna extinction in South America: a new chronology for the Argentine Pampas. Palaeogeography, Palaeoclimatology, Palaeoecology 425, 4149.CrossRefGoogle Scholar
Raczka, M.F., Bush, M.B., Folcik, A.M., Mcmichael, C.H., 2016. Sporormiella as a tool for detecting the presence of large herbivores in the Neotropics. Biota Neotropica 16, e20150090. http://dx.doi.org/10.1590/1676-0611-BN-2015-0090.Google Scholar
Raczka, M.F., De Oliveira, P.E., Bush, M., McMichael, C.H., 2013. Two paleoecological histories spanning the period of human settlement in southeastern Brazil. Journal of Quaternary Science 28, 144151.Google Scholar
Raper, D., Bush, M., 2009. A test of Sporormiella representation as a predictor of megaherbivore presence and abundance. Quaternary Research 71, 490496.Google Scholar
R, Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Ripple, W.J., Van Valkenburgh, B., 2010. Linking top-down forces to the Pleistocene megafaunal extinctions. Bioscience 60, 516526.Google Scholar
Robinson, G.S., Pigott Burney, L., Burney, D.A., Louis, T., Biological, C., 2005. Landscape paleoecology and megafaunal extinction in southeastern New York State. Ecological Monographs 75, 295315.Google Scholar
Rozas-Dávila, A., Valencia, B.G., Bush, M.B., 2016. The functional extinction of Andean megafauna. Ecology 97, 25332539.Google Scholar
Salgado-Labouriau, M.L., Casseti, V., Ferraz-Vicentini, K.R., Martin, L., Soubiès, F., Suguio, K., Turcq, B., 1997. Late Quaternary vegetational and climatic changes in cerrado and palm swamp from central Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 128, 215226.Google Scholar
Seltzer, G.O., Rodbell, D.T., Baker, P.A., Fritz, S.C., Tapia, P.M., Rowe, H.D., Dunbar, R.B., 2002. Early warming of tropical South America at the last glacial-interglacial transition. Science 296, 16851686.Google Scholar
Sridhara, S., McConkey, K., Prasad, S., Corlett, R.T., 2016. Frugivory and seed dispersal by large herbivores of Asia. In: Ahrestani, F.S., Sankaran, M. (Eds.), The Ecology of Large Herbivores in South and Southeast Asia. Springer, Dordrecht, the Netherlands, pp. 121150.Google Scholar
Steadman, D.W., Martin, P.S., MacPhee, R.D.E., Jull, A.J.T., McDonald, H.G., Woods, C.A., Iturralde-Vinent, M., Hodgins, G.W.L., 2005. Asynchronous extinction of late Quaternary sloths on continents and islands. Proceedings of the National Academy of Sciences of the United States of America 102, 1176311768.Google Scholar
Stevens, W.K., 1997. Disease is new suspect in ancient extinctions. New York Times, April 29. http://www.nytimes.com/1997/04/29/science/disease-is-new-suspect-in-ancient-extinctions.html.Google Scholar
Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615621.Google Scholar
Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S.L., Fischman, D.L., Waller, R.W., 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306, 17831786.Google Scholar
Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J.F., Schlosser, P., Broecker, W.S., Bonani, G., 1995. Cooling of tropical Brazil (5 degrees C) during the last glacial maximum. Science 269, 379383.Google Scholar
Urrego, D.H., Bush, M.B., Silman, M.R., 2010. A long history of cloud and forest migration from Lake Consuelo, Peru. Quaternary Research 73, 364373.Google Scholar
Valencia, B.G., Urrego, D.H., Silman, M.R., Bush, M.B., 2010. From ice age to modern: a record of landscape change in an Andean cloud forest. Journal of Biogeography 37, 16371647.Google Scholar
van der Kaars, S., Miller, G.H., Turney, C.S.M., Cook, E.J., Nürnberg, D., Schönfeld, J., Kershaw, A.P., Lehman, S.J., 2017. Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia. Nature Communications 8, 14142. http://dx.doi.org/10.1038/ncomms14142.Google Scholar
Velásquez-R., C.A., Hooghiemstra, H., 2013. Pollen-based 17-kyr forest dynamics and climate change from the Western Cordillera of Colombia; no-analogue associations and temporarily lost biomes. Review of Palaeobotany and Palynology 194, 3849.Google Scholar
Villavicencio, N.A., Lindsey, E.L., Martin, F.M., Borrero, L.A., Moreno, P.I., Marshall, C.R., Barnosky, A.D., 2016. Combination of humans, climate, and vegetation change triggered Late Quaternary megafauna extinction in the Última Esperanza region, southern Patagonia, Chile. Ecography 39, 125140.Google Scholar
Wanderley, M.G.L., Shepherd, G.J., Giulieti, A.M., 2001. Flora fanerogâmica do Estado de São Paulo. Vol. 1, Poaceae. FAPESP/Editora Hucitec, São Paulo, Brazil.Google Scholar
Warming, E., Ferri, M.G., 1973. Lagoa Santa e a vegetação de cerrados brasileiros. Editora da Universidade de São Paulo, São Paulo, Brazil.Google Scholar
Weinstock, J., Shapiro, B., Prieto, A., Marín, J.C., González, B.A., Gilbert, M.T.P., Willerslev, E., 2009. The Late Pleistocene distribution of vicuñas (Vicugna vicugna) and the “extinction” of the gracile llama (“Lama gracilis”): new molecular data. Quaternary Science Reviews 28, 13691373.Google Scholar
Whitney, B.S., Mayle, F.E., Punyasena, S.W., Fitzpatrick, K.A., Burn, M.J., Guillen, R., Chavez, E., Mann, D., Pennington, R.T., Metcalfe, S.E., 2011. A 45 kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 307, 177192.Google Scholar
Williams, J.W., Jackson, S.T., 2007. Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5, 475482.Google Scholar
Wood, J.R., Wilmshurst, J.M., 2012. Wetland soil moisture complicates the use of Sporormiella to trace past herbivore populations. Journal of Quaternary Science 27, 254259.Google Scholar
Wroe, S., Field, J., Fullagar, R., Jermiin, L.S., 2004. Megafaunal extinction in the late Quaternary and the global overkill hypothesis. Alcheringa: An Australasian Journal of Palaeontology 28, 291331.Google Scholar
Wyatt, J.L., Silman, M.R., 2004. Distance-dependence in two Amazonian palms: effects of spatial and temporal variation in seed predator communities. Oecologia 140, 2635.Google Scholar
Young, H.S., McCauley, D.J., Galetti, M., Dirzo, R., 2016. Patterns, causes and consequences of Anthropocene defaunation. Annual Review of Ecology, Evolution, and Systematics 47, 333358.Google Scholar