Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T06:14:04.007Z Has data issue: false hasContentIssue false

Collagen stable isotopes provide insights into the end of the mammoth steppe in the central East European plains during the Epigravettian

Published online by Cambridge University Press:  11 June 2018

Dorothée G. Drucker*
Affiliation:
Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), University of Tübingen, 72074 Tübingen, Germany
Rhiannon E. Stevens
Affiliation:
Institute of Archaeology, University College London, WC1E 6BT London, United Kingdom
Mietje Germonpré
Affiliation:
OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, 1000 Brussel, Belgium
Mikhail V. Sablin
Affiliation:
Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint-Petersburg, Russia
Stéphane Péan
Affiliation:
UMR7194, Histoire naturelle de l’Homme préhistorique, Muséum National d’Histoire Naturelle, Paris, 75013 France
Hervé Bocherens
Affiliation:
Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), University of Tübingen, 72074 Tübingen, Germany Department of Geosciences, University of Tübingen, 72074 Tübingen, Germany
*
*Corresponding author at: Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP), University of Tübingen, Tübingen, Germany. E-mail address: [email protected] (D. Drucker).

Abstract

Higher δ15N values in bone collagen of mammoth (Mammuthus primigenius) compared with coeval large herbivores is a classic trait of the mammoth steppe. An exception applies to the Epigravettian site of Mezhyrich (ca. 18–17.4 ka cal BP) in the central East European plains, where mammoth bones have δ15N values equivalent to or in a lower range than those of horse specimens (Equus sp.). We expanded our preliminary dataset to a larger sampling size of mammoth, other large herbivores, and carnivores from contemporaneous and nearby sites of Buzhanka 2, Eliseevichi, and Yudinovo. The unusual low mammoth δ15N values were confirmed at Buzhanka 2 and for some specimens from Eliseevichi, while most individuals from Yudinovo displayed the expected high δ15N values, meaning similar to those of the large canids. The possibility of a contrast in migration pattern is not supported since the δ34S values, a marker of mobility, do not correlate with the δ15N values of mammoth bone collagen. No clear chronological tendency could be revealed, at least not at the scale of radiocarbon dating. The low range in δ15N values is likely to reflect a change in the specific niche of the mammoth in the southern part of its distribution.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ambrose, S.H., 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17, 431451.Google Scholar
Bocherens, H., 2003. Isotopic biogeochemistry and the paleoecology of the mammoth steppe fauna. In: Reumer, W.F., De Vos, J., Mol, D. (Eds.), Advances in Mammoth Research. Deinsea 9, Rotterdam, pp. 5776.Google Scholar
Bocherens, H., 2015. Isotopic tracking of large carnivore palaeoecology in the mammoth steppe. Quaternary Science Reviews 117, 4271.Google Scholar
Bocherens, H., Billiou, D., Patou-Mathis, M., Bonjean, D., Otte, M., Mariotti, A., 1997. Paleobiological implications of the isotopic signatures (13C, 15N) of fossil mammal collagen in Scladina Cave (Sclayn, Belgium). Quaternary Research 48, 370380.Google Scholar
Bocherens, H., Drucker, D.G., Bonjean, D., Bridault, A., Conard, N.J., Cupillard, C., Germonpré, M., et al., 2011. Isotopic evidence for dietary ecology of cave lion (Panthera spelaea) in North-Western Europe: prey choice, competition and implications for extinction. Quaternary International 245, 249261.Google Scholar
Bocherens, H., Drucker, D.G., Germonpré, M., Lázničková-Galetová, M., Naito, Y.I., Wissing, C., Brůžek, J., Oliva, M., 2015. Reconstruction of the Gravettian food-web at Předmostí I using multi-isotopic tracking (13C, 15N, 34S) of bone collagen. Quaternary International 359, 211228.Google Scholar
Bocherens, H., Fizet, M., Mariotti, A., 1994. Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biogeochemistry: implications for Pleistocene bears. Palaeogeography, Palaeoclimatology, Palaeoecology 107, 213225.Google Scholar
Bocherens, H., Fizet, M., Mariotti, A., Gangloff, R.A., Burns, J.A., 1994. Contribution of isotopic biogeochemistry (13C, 15N, 18O) to the paleoecology of mammoths (Mammuthus primigenius). Historical Biology 7, 187202.Google Scholar
Bocherens, H., Pacaud, G., Lazarev, P., Mariotti, A., 1996. Stable isotope abundances (13C, 15N) in collagen and soft tissues from Pleistocene mammals from Yakutia. Implications for the paleobiology of the mammoth steppe. Palaeogeography, Palaeoclimatology, Palaeoecology 126, 3144.Google Scholar
Bronk Ramsey, C., 2001. Development of the radiocarbon calibration program OxCal. Radiocarbon 43, 355363.Google Scholar
Bronk Ramsey, C., 2009a. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.Google Scholar
Bronk Ramsey, C., 2009b. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 10231045.Google Scholar
Demay, L., Belyaeva, V.I., Kulakovksa, L.V., Patou-Mathis, M., Péan, S., Stupak, D.V., Vasil’ev, P.M., Otte, M., Noiret, P., 2016. New evidences about human activities during the first part of the Upper Pleniglacial in Ukraine from zooarchaeological studies. Quaternary International 412, 1636.Google Scholar
Demay, L., Patou-Mathis, M., Péan, S., Khlopachev, G.A., Sablin, M.V., 2017. From mammoth to fox: functional identification of Eliseevichi 1 within Upper Pleniglacial settlements of the Desna valley. Vita Antiqua 9, 81106.Google Scholar
DeNiro, M.J., 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806.Google Scholar
Drucker, D.G., Bocherens, H., Péan, S., 2014. Isotopes stables (13C, 15N) du collagène des mammouths de Mezhyrich (Epigravettien, Ukraine): implications paléoécologiques. L’Anthropologie 118, 504517.Google Scholar
Drucker, D.G., Hobson, K.A., Ouellet, J.P., Courtois, R., 2010. Influence of forage preferences and habitat use on 13C and 15N abundance in wild caribou (Rangifer tarandus caribou) and moose (Alces alces) from Canada. Isotopes in Environmental and Health Studies 46, 107121.Google Scholar
Drucker, D.G., Naito, Y.I., Péan, S.C., Prat, S., Crépin, L., Patou-Mathis, M., Chikaraishi, Y., et al., 2017. Isotopic analyses suggest mammoth and plant in the diet of the oldest anatomically modern humans from far southeast Europe. Scientific Reports 7, 6833.Google Scholar
Drucker, D.G., Vercoutère, C., Chiotti, L., Nespoulet, R., Crépin, L., Conard, N.J., Münzel, S.C., et al., 2015. Tracking possible decline of woolly mammoth during the Gravettian in Dordogne (France) and the Ach Valley (Germany) using multi-isotope tracking (13C, 14C, 15N, 34S, 18O). Quaternary International 359, 304317.Google Scholar
Fox-Dobbs, K., Leonard, J.A., Koch, P.L., 2008. Pleistocene megafauna from eastern Beringia: paleoecological and paleoenvironmental interpretations of stable carbon and nitrogen isotope and radiocarbon records. Palaeogeography, Palaeoclimatology, Palaeoecology 261, 3046.Google Scholar
Germonpré, M., Sablin, M.V., 2017. Chapter 2. Humans and mammals in the Upper Palaeolithic of Russia. In: Albarella, U., Russ, H., Vickers, K., Viner-Daniels S. (Eds.), Oxford Handbook of Zooarchaeology. Oxford University Press, Oxford, pp. 2538.Google Scholar
Germonpré, M., Sablin, M., Khlopachev, G.A., Grigorieva, G.V., 2008. Possible evidence of mammoth hunting during the Epigravettian at Yudinovo, Russian Plain. Journal of Anthropological Archaeology 27, 475492.Google Scholar
Germonpré, M., Sablin, M.V., Stevens, R.E., Hedges, R.E., Hofreiter, M., Stiller, M., Després, V.R., 2009. Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. Journal of Archaeological Science 36, 473490.Google Scholar
Gladkih, M.I., Kornietz, N.L., Soffer, O., 1984. Mammoth-bone dwellings on the Russian plain. Scientific American 251, 164175.Google Scholar
Graham, R.W., Belmecheri, S., Choy, K., Culleton, B.J., Davies, L.J., Froese, D., Heintzman, P.D., et al., 2016. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. Proceedings of the National Academy of Sciences of the United States of America 113, 93119313.Google Scholar
Haesaerts, P., Péan, S., Valladas, H., Damblon, F., Nuzhnyi, D., 2015. Contribution à la stratigraphie du site paléolithique de Mezhyrich (Ukraine). L’Anthropologie 119, 364393.Google Scholar
Hartman, G., 2011. Are elevated δ15N values in herbivores in hot and arid environments caused by diet or animal physiology? Functional Ecology 25, 122131.Google Scholar
Haynes, G., 1989. Late Pleistocene mammoth utilization in northern Eurasia and North America. Archaeozoologia 3, 81108.Google Scholar
Hoffecker, J.F., 2002. Desolate Landscapes: Ice-Age Settlement in Eastern Europe. University Press, Rutgers.Google Scholar
Iacumin, P., Nikolaev, V., Ramigni, M., 2000. C and N stable isotope measurements on Eurasian fossil mammals, 40 000 to 10 000 years BP: herbivore physiologies and palaeoenvironmental reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 163, 3347.Google Scholar
Iakovleva, L., Djindjian, F., 2005. New data on Mammoth bone settlements of Eastern Europe in the light of the new excavations of the Gontsy site (Ukraine). Quaternary international 126, 195207.Google Scholar
Jay, M., Montgomery, J., Nehlich, O., Towers, J., Evans, J., 2013. British Iron Age chariot burials of the Arras culture: a multi-isotope approach to investigating mobility levels and subsistence practices. World Archaeology 45, 473491.Google Scholar
Kahlke, R.D., 2014. The origin of Eurasian mammoth faunas (MammuthusCoelodonta faunal complex). Quaternary Science Reviews 96, 3249.Google Scholar
Khlopachev, G.A., 2006. Bivnevye industrii verhnego paleolita Vostochnoi Evropy. [In Russian.] Nauka, Saint-Petersburg.Google Scholar
Khlopachev, G.A, Grigorieva, G.V., Kulkova, M.A., Sablin, M.V., 2006. Issledovaniya verhnepaleoliticheskogo poseleniya Yudinovo (2000–2005). In: Chistov, Y.K. (Eds.), Radlovskie chteniya. [In Russian.] Lema, Saint-Petersburg, pp. 269274.Google Scholar
Kilgallon, C., Flach, E., Boardman, W., Routh, A., Strike, T., Jackson, B., 2008. Analysis of Biochemical markers of bone metabolism in Asian elephants (Elephas maximus) . Journal of Zoo and Wildlife Medicine 39, 527536.Google Scholar
Kornietz, N.L., Gladkikh, M.I., Velichko, A.A., Antonova, V.G., Gribchenko, Y.N., Zelikson, E.M., Kurenkova, E.I., Khalcheva, T.A., Chepalyga, A.L., 1981. Mezhirich. In: Velichko, A.A. (Ed.), Arkheologiya i paleogeografiya pozdnego paleolita Russkoy ravniny. [In Russian.], Nauka, Moscow, pp. 106119.Google Scholar
Kuitems, M., van Kolfschoten, T., van der Plicht, J., 2015. Elevated δ15N values in mammoths: a comparison with modern elephants. Archaeological and Anthropological Sciences 7, 289295.Google Scholar
Lister, M., Stuart, A.J., 2013. Extinction chronology of the woolly rhinoceros Coelodonta antiquitatis: reply to Kuzmin. Quaternary Science Reviews 62, 144146.Google Scholar
Longin, R., 1971. New method of collagen extraction for radiocarbon dating. Nature 230, 241.Google Scholar
Markova, A.K., Puzachenko, A.Y., Van Kolfschoten, T., Van der Plicht, J., Ponomarev, D.V., 2013. New data on changes in the European distribution of the mammoth and the woolly rhinoceros during the second half of the Late Pleistocene and the early Holocene. Quaternary International 292, 414.Google Scholar
Merwe, N.J., Lee-Thorp, J.A., Bell, R.H., 1988. Carbon isotopes as indicators of elephant diets and African environments. African Journal of Ecology 26, 163172.Google Scholar
Münzel, S.C., Hofreiter, M., Stiller, M., Mittnik, A., Conard, N.J., Bocherens, H., 2011. Pleistocene bears in the Swabian Jura (Germany): genetic replacement, ecological displacement, extinctions and survival. Quaternary International 245, 225237.Google Scholar
Murphy, B.P., Bowman, D.M., 2006. Kangaroo metabolism does not cause the relationship between bone collagen δ15N and water availability. Functional Ecology 20, 10621069.Google Scholar
Naito, Y.I., Chikaraishi, Y., Drucker, D.G., Ohkouchi, N., Semal, P., Wißing, C., Bocherens, H., 2016. Ecological niche of Neanderthals from Spy Cave revealed by nitrogen isotopes of individual amino acids in collagen. Journal of Human Evolution 93, 8290.Google Scholar
Nehlich, O., Richards, M.P., 2009. Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeological and Anthropological Sciences 1, 5975.Google Scholar
Nuzhnyi, D., 2008. The Epigravettian variability of the middle Dnieper river basin. Doslidzhennya pervisnoyi arkheolohiyi v Ukrayini. In: Materialy mizhnarodnoyi naukovoyi konferentsiyi (Radomyshl’ ta yoho istoriya). Korvin Press, Kyiv, pp. 96134.Google Scholar
Nuzhnyi, D.Yu., 2002. Upper Paleolithic sites of Mezhirich type and their place among Epi-Gravettian assemblages of the Middle Dnieper. [In Ukrainian.] Kam’yana Doba Ukraïny 1, 5781.Google Scholar
Palkopoulou, E., Dalén, L., Lister, A.M., Vartanyan, S., Sablin, M., Sher, A., Edmark, V.N., et al., 2013. Holarctic genetic structure and range dynamics in the woolly mammoth. Proceedings of Royal Society B 280, 20131910.Google Scholar
Péan, S., 2015. Mammouth et comportements de subsistance à l’Épigravettien: analyse archéozoologique du secteur de la fosse n°7 associée à l’habitation n°1 de Mezhyrich (Ukraine). [In French.] L’Anthropologie 119, 417463.Google Scholar
Péan, S., Nuzhnyi, D., Prat, S., 2015. Hommes et environnements au Paléolithique supérieur en Ukraine: introduction aux recherches interdisciplinaires menées sur le site de Mezhyrich. [In French.] L’Anthropologie 119, 349354.Google Scholar
Pidoplichko, I.G., 1998. Upper Palaeolithic dwellings of mammoth bones in the Ukraine: Kiev-Kirillovski, Gontsy, Dobranichevka, Mezin and Mezhirich. British Archaeological Reports International Series 712, Oxford.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., et al., 2009. Intcal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, 11111150.Google Scholar
Richards, M.P., Fuller, B.T., Hedges, R.E., 2001. Sulphur isotopic variation in ancient bone collagen from Europe: implications for human palaeodiet, residence mobility, and modern pollutant studies. Earth and Planetary Science Letters 191, 185190.Google Scholar
Sablin, M., Khlopachev, G., 2002. The earliest Ice Age dogs: evidence from Eliseevichi. Current Anthropology 43, 795799.Google Scholar
Sablin, M.V., Khlopachev, G.A., 2003. Die altesten Hunde aus Eliseevici I (Russland). [In German.] Archaologisches Korrespondenzblatt 33, 309316.Google Scholar
Schwartz-Narbonne, R., Longstaffe, F.J., Metcalfe, J.Z., Zazula, G., 2015. Solving the woolly mammoth conundrum: amino acid 15N-enrichment suggests a distinct forage or habitat. Scientific Reports 5 9791.Google Scholar
Shipman, P., 2015. How to kill 86 mammoths? Taphonomic investigations of mammoth megasites. Quaternary International 359–360, 3846.Google Scholar
Shydlovskyi, P.S., Nuzhnyi, D.Yu., Péan, S., Lyzun, O.M., 2015. Doslidzhennya hospodars’koï yamy N°6 Mezhyrits’kiy stoyantsi. In: Arkheolohichni doslidzhennya v Ukraïni 2014, Instytut Arkheolohiï NAN Ukraïni / Archaeological researches in Ukraine, Institute of Archaeology. [In Ukrainian.] National Academy of Sciences of Ukraine, Kyiv, pp. 259–261.Google Scholar
Soffer, O., 1985. The Upper Paleolithic of the Central Russian Plain. Academic Press, Orlando.Google Scholar
Soffer, O., Adovasio, J.M., Kornietz, N.L., Velichko, A.A., Gribchenko, Y.N., Lenz, B.R., Suntsov, V.Y., 1997. Cultural stratigraphy at Mezhirich, an Upper Palaeolithic site in Ukraine with multiple occupations. Antiquity 71, 4862.Google Scholar
Stevens, R.E., Hedges, R.E., 2004. Carbon and nitrogen stable isotope analysis of northwest European horse bone and tooth collagen, 40,000 BP-present: Palaeoclimatic interpretations. Quaternary Science Reviews 23, 977991.Google Scholar
Stuart, A.J., 2005. The extinction of woolly mammoth (Mammuthus primigenius) and straight-tusked elephant (Palaeoloxodon antiquus) in Europe. Quaternary International 126, 171177.Google Scholar
Stuart, A.J., Sulerzhitsky, L.D., Orlova, L.A., Kuzmin, Y.V., Lister, A.M., 2002. The latest woolly mammoths (Mammuthus primigenius Blumenbach) in Europe and Asia: a review of the current evidence. Quaternary Science Reviews 21, 15591569.Google Scholar
Stupak, D., 2014. Les assemblages lithiques du site épigravettien de Buzhanka 2 (Ukraine). [In French.] L’Anthropologie 118, 538553.Google Scholar
Stupak, D.V., 2005. Nova verkhn’opaleolitychna stoyanka Buzhanka 2 u Ponesenni. In: Proceedings of the conference “Fastivshchyna ta problemy arkheolohiyi Seredn’oho Podniprov”ya [The problems of archaeology of Middle Dnipro basin]”. [In Ukrainian.] Kyiv-Fastiv, pp. 40–53.Google Scholar
Sukumar, R., Ramesh, R., 1992. Stable carbon isotope ratios in Asian elephant collagen: implications for dietary studies. Oecologia 91, 536539.Google Scholar
Svoboda, J., Péan, S., Wojtal, P., 2005. Mammoth bone deposits and subsistence practices during Mid-Upper Palaeolithic in Central Europe: three cases from Moravia and Poland. Quaternary International 126, 209221.Google Scholar
Szpak, P., Gröcke, D.R., Debruyne, R., MacPhee, R.D., Guthrie, R.D., Froese, D., Zazula, G.D., Patterson, W.P., Poinar, H.N., 2010. Regional differences in bone collagen δ13C and δ15N of Pleistocene mammoths: implications for paleoecology of the mammoth steppe. Palaeogeography, Palaeoclimatology, Palaeoecology 286, 8896.Google Scholar
Velichko, A.A., Zelikson, E.M., 2005. Landscape, climate and mammoth food resources in the East European Plain during the Late Paleolithic epoch. Quaternary International 126, 137151.Google Scholar