Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T15:08:57.615Z Has data issue: false hasContentIssue false

Climatic variability in the northern sector of the American tropics since the latest MIS 3

Published online by Cambridge University Press:  14 February 2017

Socorro Lozano-García*
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
Beatriz Ortega
Affiliation:
Instituto de Geofísica, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
Priyadarsi D. Roy
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
Laura Beramendi-Orosco
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
Margarita Caballero
Affiliation:
Instituto de Geofísica, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
*
*Corresponding author at: Departamento de Paleontología, Instituto de Geología, Universidad Nacional Autónoma de México, México D.F., CP 04510, México

E-mail address: [email protected] (S. Lozano-García).

Abstract

We inferred millennial-scale climate variations and paleohydrological conditions in the northern sector of the American tropics for 30.3–5.5 cal ka BP using geochemical characteristics of sediments from Lake Chalco in central Mexico. The sediment sequence is chronologically constrainedwith three tephra and nine radiocarbon dates. Temporal variations in titanium, total inorganic carbon, total organic carbon/titanium ratio, carbon/nitrogen ratio, and silica/titanium ratio indicate changes in runoff, salinity, productivity, and sources. Higher concentrations of Ti indicate more runoff during latest Marine Isotope Stage (MIS) 3 (30.3–28.6 cal ka BP). Runoff was lower during the last glacial maximum (LGM; 23–19 cal ka BP) than during the Heinrich 2 event (26–24 cal ka BP). The interval of reduced runoff continued up to 17.5 cal ka BP but increased during the Bølling/Allerød. Trends of decreasing runoff and increasing salinity are observed throughout MIS 1. Lake Chalco received less runoff during the LGM compared to deglaciation, opposite the trend of other North American tropical records. Different amounts of rainfall at different sites are possibly due to shifts in the position of the Intertropical Convergence Zone, changes in the size of the Altlanticwarmpool, and varying sea-surface temperatures of the Atlantic and Pacific oceans

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amador, J.A., Alfaro, E.J., Lizano, O.G., Magaña, V.O., 2006. Atmospheric forcing of the eastern tropical Pacific: a review. Journal of Climate 69, 101142.Google Scholar
Arce, J.L., Macías, J.L., Vázquez-Selem, L., 2003. The 10.5 ka plinial eruption of Nevado de Toluca, Mexico, stratigraphical and hazard implications. Geological Society of America Bulletin 115, 230248.2.0.CO;2>CrossRefGoogle Scholar
Arce, J.L., Layer, P.W., Lassiter, J.C., Benowitz, J.A., Macías, J.L., Ramírez-Espinosa, J., 2013. 40Ar/39Ar dating, geochemistry, and isotopic analyses of the quaternary Chichinautzin volcanic field, south of Mexico City: implications for timing, eruption rate, and distribution of volcanism. Bulletin of Volcanology 75, 774.Google Scholar
Bradbury, J.P., 1989. Late Quaternary lacustrine paleoenvironments in the Cuenca of Mexico. Quaternary Science Reviews 8, 75100.Google Scholar
Bradbury, J.P., 1997. Sources of glacialmoisture inMesoamerica. Quaternary International 43 (44), 97110.Google Scholar
Bronk Ramsey, C., 2008. Deposition models for chronological records. Quaternary Science Reviews 27, 4260.Google Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337359.Google Scholar
Brown, T.A., Nelson, D.E.,Mathewes, R.W., Vogel, J.S., Southon, J.R., 1989. Radiocarbon dating of pollen acelerator mass spectrometry. Quaternary Research 32, 205212.Google Scholar
Brown, T.A., Farwell, G.W., Grootes, P.M., Schmidt, F.H., 1992. Radiocarbon AMS dating pollen extracted peat samples. Radiocarbon 34, 550556.Google Scholar
Brown, E.T., Werne, J.P., Lozano-García, M.S., Caballero, M., Ortega-Guerrero, B., Cabral-Cano, E., Valero-Garces, B.L., Schwalb, A., Arciniega-Ceballos, A., 2012. Scientific drilling in the Basin of Mexico to evaluate climate history, hydrological resouces, and siesmic and volcanic hazards. Scientific Drilling 14, 72–75.Google Scholar
Caballero, M., Ortega, B., Valadez, F., Metcalfe, S.E., Macias, J.L., Sugiura, Y., 2002. Sta. Cruz Atizapán: a 22-ka lake level record and climatic implicatios for the late Holocene human occupation in the Upper Lerma Basin, Central Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology 186, 217–235.Google Scholar
Caballero, M., Lozano-Garcia, M.S., Vazquez-Selem, L., Ortega, B., 2010. Evidencias de cambio climático y ambiental en los registros glaciales y en cuencas lacustres del centro de México durante el último máximo glacial. Boletín de la Sociedad Geológica Mexicana 62, 359377.Google Scholar
Caballero-Miranda, M., Ortega-Guerrero, B., 1998. Lake levels sice about 40,000 years ago at Lake Chalco, near Mexico City. Quaternary Research 50, 6979.Google Scholar
Cohen, A.S., 2003. Palaeolimnology: the history and evolution of lake systems. Oxford University Press, New York.CrossRefGoogle Scholar
Correa-Metrio, A., Bush, M.B., Lozano-Garcia, S., Sosa-Nájera, S., 2013. Millennial-scale temperature change velocity in the continental northern Neotropics. PLoS ONE 8, e81958.Google Scholar
Ferrari, L., Orozco-Esquivel, M.T., Manea, V., Manea, M., 2012. The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522523, 122–149.Google Scholar
García-Palomo, A., Macías, J.L., Capra, L., 2002. Geology of Nevado de Toluca Volcano and surrounding areas, central Mexico. Map and Chart Series MCH089. Geological Society of America, p. 26.Google Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Rohl, U., 2001. Southwardmigration of the Intertropical Convergence Zone through the Holocene. Science 293, 13041308.Google Scholar
Herrera-Hernandez, D., 2011. Estratigrafía y análsisi de facies de los sedimentos lacustres del Cuaternario tardío de la cuenca de Chalco, México. Instituto de Geofísica Universidad Nacional Autónoma de México, p. 122.Google Scholar
Hodell, D.A., Anselmetti, F.S., Aristegui, D., Brenner, M., Curtis, J.H., Gilli, A., Grzesik, A., Guilderson, T.J., Müller, A.D., Bush, M.B., Correa-Metrio, A., , Escobar, J., Kutterolf, S., 2008. An 85-ka record of climate change in lowland Central America. Quaternary Science Reviews 27, 11521165.Google Scholar
Katz, B.J., 1990. Controls on the distribution of lacustrine source rocks through time and space. In: Katz, B.J. (Ed.), Lacustrine Basin Exploration: Case Studies and Modern Analogues. American Association of Petroleum Geologists, pp. 6176.CrossRefGoogle Scholar
Lachniet, M.S., Asmeron, Y., J.P.,B., Polyak, V.J., Vazquez-Señem, L., 2013. Orbital pacing and ocean circulation-induced collapses of the Mesoameican monsoon over the past 22,000 y. PNAS 110, 9255–9260.CrossRefGoogle Scholar
Lea, D.W., Pak, D.K., Peterson, L.C., Hughen, K.A., 2003. Synchroneity of tropical and highlatitude atlantic temperatures over the last glacial termination. Science 301, 13611364.Google Scholar
Lozano-García, M.S., 1996. La vegetación Cuaternaria en el Centro de México: Registros Palinológicos e Implicaciones Paleoclimáticas. Boletín de la Sociedad Botánica de México 109.CrossRefGoogle Scholar
Lozano-Garcia, S., 1996. La vegetación Cuaternaria en el Centro de México: Registros Palinológicos e Implicaciones Paleoclimáticas. Boletín de la Sociedad Botánica de México 57, 79102.Google Scholar
Lozano-García, M.S., Ortega-Guerrero, B., 1994. Palynological and magnetic susceptibility records of Lake Chalco, central Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 177191.Google Scholar
Lozano-García, M.S., Ortega-Guerrero, B., 1998. Late Quaternary environmental changes of the central part of the Basin of Mexico: correlation between Texcoco and Chalco basins. Review of Palaeobotany and Palynology 99, 7793.Google Scholar
Lozano-García, M.S., Ortega-Guerrero, B., Caballero-Miranda, M., Urrutia-Fucugauchi, J., 1993. Late Pleistocene and Holocene paleoenvironments of Chalco Lake, Central Mexico. Quaternary Research 40, 332342.Google Scholar
Mason, B., Moore, C.B., 1982. Principles of Geochemistry. John Wiley & Sons, New York.Google Scholar
McClymont, E.L., Ganeshram, R.S., Pichevin, L.E., Talbot, H.M., van Dongen, B.E., Thunell, R.C., Haywood, A.M., Singarayer, J.S., Valdes, P.J., 2012. Sea-surface temperature records of Termination 1 in the Gulf of California: challenges for seasonal and interannual analogues of tropical Pacific climate change. Paleoceanography 27. http://dx.doi. org/10.1029/2011PA002226. Google Scholar
Metcalfe, S.E., Jones, M.D., Davies, S.J., Noren, A., MacKenzie, A.B., 2010. Climate variability over the last two millennia in the North AmericanMonsoon region, recorded in laminated lake sediments from Laguna de Juanacatlán, Mexico. The Holocene 20, 11951206.Google Scholar
Meyers, P.A., Ishiwatari, R., 1995. Organic matter accumulation records in lake sediments. In: Lerman, A., Imboden, D., Gat, J. (Eds.), Physics and Chemistry of Lakes. Springer-Verlag, New York, pp. 279–328.Google Scholar
Muñoz, E., Busalacchi, A.J., Nigam, S., Ruiz-Barradas, A., 2008. Winter and summer structure of the Caribbean low-level jet. Journal of Climate 21, 12601276.Google Scholar
Niederberger, C., 1987. Paleopaysages et archeologie pre-urbaine du basin de Mexico. Centr d'etudes Mexicaines et Centamericaines, Mexico.Google Scholar
Ortega-Guerrero, B., Lozano-García, S., Caballero, M., 2015. Historia de la evolución deposicinal del lago de Chalco, México desde el MIS 3. Boletín de la Sociedad Geológica Mexicana (in press).CrossRefGoogle Scholar
Ortega-Guerrero, B., Newton, A.J., 1998. Geochemical characterization of Late Pleistocene and Holocene tephra layers fromthe Basin of Mexico, CentralMexico. Quaternary Research 50, 90–106.CrossRefGoogle Scholar
Ortega-Guerrero, B., Thompson, R., Urrutia-Fucugauchi, J., 2000. Magnetic properties of lake sediments from Lake Chalco, central Mexico, and their palaeoenvironmental implications. Journal of Quaternary Science 15, 127140.Google Scholar
Peterson, L.C., Haug, G.H., Hughen, K.A., Röhl, U., 2000. Rapid changes in the hydrologic cycle of the Tropical Atlantic during the Last Glacial. Science 290, 19471951.Google Scholar
R Development Core Team, 2009. R: A language and environment for statistical computing. 2.10 ed. R Foundation for Statistical Computing, Vienna, Austria 3-900051-07-0 (http://www.R-project.org). Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich,M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., van der Plicht, J., 2013. IntCal13 andMarine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Rzedowski, G.C., Rzedowski, J., 2001. Flora fanerogámica del Valle de México Instituto de Ecología. A.C. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.Google Scholar
Sanders, W.T., Parsons, J.R., Stantley, R.S., 1979. The basin of Mexico. Ecological processes in the evolution of a civilization. Academic Press.Google Scholar
Schmidt, M.W., Spero, H.J., Lea, D.W., 2004. Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation. Nature 428, 160163.Google Scholar
Sosa-Ceballos, G., Gardner, J.E., Siebe, C., Macías, J.L., 2012. A caldera-forming eruption ∼14100 14C yr BP at Popocatépetl volcano, México. Insights from eruption dynamics and magma mixing. Journal of Volcanology and Geothermal Research 212213, 27–40.Google Scholar
Sosa-Nájera, S., Lozano-García, M.S., Roy, P.D., Caballero, M., 2010. Registro de sequías históricas en el occidente de México con base en el análisis elemental de sedimentos lacustres: El caso del lago Santa María del Oro. Boletín de la Sociedad Geológica Mexicana 62, 437451.CrossRefGoogle Scholar
Vazquez-Selem, L., Heine, K., 2011. Late Quaternary Glaciation in Mexico. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations - Extent and Chronology, Part III: South America, Asia, Africa, Australia, Antarctica. Elsevier, Amsterdam, pp. 233242.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.C., Dorale, J.A., 2001. A highresolution absolute-dated late Pleistocene monsoon record from Hulu cave, China. Science 294, 23452348.CrossRefGoogle ScholarPubMed
Wang, C., Enfield, D.B., Lee, S.K., Landsea, C.W., 2006. Influences of the AtlanticWarmpool on Western Hemisphere summer rainfall and Atlantic hurricanes. Journal of Climate 19, 30113028.Google Scholar
Wang, C., Lee, S., Enfield, B.D., 2007. Impact of the Atlantic warm pool on the summer climate of the western hemisphere. Journal of Climate 20, 50215040.Google Scholar
Wang, C., Lee, S.-L., Enfield, D.B., 2008. Atlantic warm pool acting as a link between atlantic multidecadal oscillation and atlantic tropical cyclone activity. Geochemistry, Geophysics, Geosystems 9, Q05V03.Google Scholar
Yarincik, K.M., Murray, R.W., Lyons, T.W., Peterson, L.C., Haug, G.H., 2000. Oxygenation history of bottomwaters in the Cariaco Basin, Venezuela, over the past 578,000 years: Results from redox-sensitive metals (Mo, V, Mn, and Fe) (Paper 1999PA000401). Paleoceanography 15, 593–604.Google Scholar
Ziegler, M., Nürnberg, D., Karas, C., Tiedemann, R., Lourens, J.L., 2008. Persistent summer expansion of the Atlantic warm pool during glacial abrupt cold events. Nature Geoscience 1, 601–605.Google Scholar