Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T09:18:11.344Z Has data issue: false hasContentIssue false

Climate Forcing Due to the 8200 Cal yr BP Event Observed at Early Neolithic Sites in the Eastern Mediterranean

Published online by Cambridge University Press:  20 January 2017

Bernhard Weninger*
Affiliation:
Universität zu Köln, Institut für Ur- und Frühgeschichte, Radiocarbon Laboratory, Weyertal 125, D-50923 Köln
Eva Alram-Stern
Affiliation:
Mykenische Kommission, Österreichische Akademie der Wissenschaften, Postgasse 7/St.1/1.St., A-1010 Wien
Eva Bauer
Affiliation:
Potsdam Institute for Climate Impact Research, Telegrafenberg A26, D-14412 Potsdam
Lee Clare
Affiliation:
Universität zu Köln, Institut für Ur- und Frühgeschichte, Radiocarbon Laboratory, Weyertal 125, D-50923 Köln
Uwe Danzeglocke
Affiliation:
Universität zu Köln, Institut für Ur- und Frühgeschichte, Radiocarbon Laboratory, Weyertal 125, D-50923 Köln
Olaf Jöris
Affiliation:
Römisch Germanisches Zentralmuseum Mainz, Forschungsbereich Altsteinzeit, Schloβ Monrepos, D-56567 Neuwied
Claudia Kubatzki
Affiliation:
Previously: Potsdam Institute for Climate Impact Research, Telegrafenberg A26, D-14412 Potsdam. Now: Alfred-Wegener-Institut, Bussestrasse 24, D-27570 Bremerhaven
Gary Rollefson
Affiliation:
Whitman College, Department of Anthropology, 345 Boyer Avenue, Walla Walla, Washington, DC 99362, USA
Henrieta Todorova
Affiliation:
Bulgarian Academy of Sciences, Archaeological Institute and Museum, Saborna, 2, BG-1 000 Sofia
Tjeerd van Andel
Affiliation:
University of Cambridge, Department of Earth Sciences, Downing Street, GB-Cambridge CB2
*
*Corresponding author. E-mail address:[email protected] (B. Weninger).

Abstract

We explore the hypothesis that the abrupt drainage of Laurentide lakes and associated rapid switch of the North Atlantic thermohaline circulation 8200 yr ago had a catastrophic influence on Neolithic civilisation in large parts of southeastern Europe, Anatolia, Cyprus, and the Near East. The event at 8200 cal yr BP is observed in a large number of high-resolution climate proxies in the Northern Hemisphere, and in many cases corresponds to markedly cold and arid conditions. We identify the relevant archaeological levels of major Neolithic settlements in Central Anatolia, Cyprus, Greece and Bulgaria, and examine published stratigraphic, architectural, cultural and geoarchaeological studies for these sites. The specific archaeological events and processes we observe at a number of these sites during the study interval 8400–8000 cal yr BP lead us to refine some previously established Neolithisation models. The introduction of farming to South-East Europe occurs in all study regions (Thrace, Macedonia, Thessaly, Bulgaria) near 8200 cal yr BP. We observe major disruptions of Neolithic cultures in the Levant, North Syria, South-East Anatolia, Central Anatolia and Cyprus, at the same time. We conclude that the 8200 cal yr BP aridity event triggered the spread of early farmers, by different routes, out of West Asia and the Near East into Greece and Bulgaria.

Type
Special Issue Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akkermans, P.M., Cappers, R., Cavallo, C., Nieuwenhuyse, O., Nilhamn, B., and Otte, I.N. Investigating the early pottery neolithic of northern Syria: new evidence from tell Sabi Abyad. American Journal of Archaeology 110, 1 (2006). 123156.CrossRefGoogle Scholar
Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., and Clark, P.U. Holocene climate instability: a prominent, widespread event 8200 yr ago. Geology 25, 6 (1997). 483486.2.3.CO;2>CrossRefGoogle Scholar
Alram-Stern, E., (1996). Die Ägäische Frühzeit, 2. Serie. Forschungsbericht 1975–1993. 1. Das Neolithikum in Griechenland mit Ausnahme von Kreta und Zypern, Wien.Google Scholar
Alram-Stern, E. The Early Neolithic settlement in Central and Southern Greece. The actual state of research. Lichter, C. How did farming reach Europe? Anatolian-European relations from the second half of the seventh through the first half of the sixth millenium cal BC. International Workshop, Istanbul, May 20th–22nd 2004. (2004). 183194.Google Scholar
Ammerman, A.J., and Cavalli-Sforza, L.L. The Neolithic transition and the genetics of population in Europe. (1984). Princeton Univ. Press, Princeton, NJ.CrossRefGoogle Scholar
Ariztegui, D., Asioli, A., Lowe, J.J., Trincardi, F., Vigliotti, L., Tamburini, F., Chondrogianni, C., Accorsi, C.A., Bandini Mazzanti, M., Mercuri, A.M., Van der Kaars, S., McKenzie, J.A., and Oldfield, F. Palaeoclimate and the formation of sapropel S 1: inferences from Late Quaternary lacustrine and marine sequences in the central Mediterranean region. Palaeogeography, Palaeoclimatology, Palaeoecology 158, (2000). 215240.CrossRefGoogle Scholar
Arz, H.W., Lamy, F., Pätzold, P., Müller, P.J., and Prins, M. Mediterranean moisture source for early-Holocene humid period in the Red Sea. Science 300, (2003). 118121.CrossRefGoogle Scholar
Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T., Kerwin, M.W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M.D., and Gagnon, J.-M. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, (1999). 344348.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth, C.J. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67, 17 (2003). 31813199.CrossRefGoogle Scholar
Barker, H., and Makkey, C. British Museum natural radiocarbon measurements II. Radiocarbon 2, (1960). 2630.Google Scholar
Barker, H., and Makkey, C. British Museum natural radiocarbon measurements II. Radiocarbon 5, (1963). 104108.Google Scholar
Bauer, E., Ganopolski, A., and Montoya, A. Simulation of the cold climate event 8200 years ago by meltwater outburst from Lake Agassiz. Paleoceanography (2004). 19/3, PA3014, doi:http://dx.doi.org/10.1029/2004PA001030CrossRefGoogle Scholar
Bienert, H.-D., (2000). Kult und Religion in prähistorischer Zeit. Eine Studie anhand von Fundmaterial epipaläolithischer und frühneolithischer Gesellschaften/Kulturen Südwestasiens (12.-6. Jt. v.u.Z.). Unveröff. Dissertation Universität Berlin.Google Scholar
Bintliff, J. The plain of western macedonia and the neolithic site of nea nikomedeia. Proceedings of the Prehistoric Society 42, (1976). 241262.CrossRefGoogle Scholar
Böhner, U., (2006). Near East Radiocarbon Database. (www.context-database.uni-koeln.de).Google Scholar
Budja, M. The transition to farming in Southeast Europe: perspectives from pottery. Documenta Praehistorica 28, (2001). 2747.CrossRefGoogle Scholar
Caneva, I. Early farmers on the Cilician coast: Yumuktepe in the seventh millennium BC. Özdoğan, M., and Başgelen, N. Neolithic in Turkey, the cradle of civilization. (1999). New discoveries, Istanbul. 105114.Google Scholar
Coleman, J., (1992). Greece, the Aegean and Cyprus. In: Ehrich, R. (Ed.). Chronologies in Old World Archaeology: Chicago.: University of Chicago Press, . Vol. I, 247288.; Vol. II, 203229.Google Scholar
Cressford, C. A new dating sequence for Çatalhöyük. Antiquity 75, (2001). 717725.CrossRefGoogle Scholar
Demoule, J.-P., and Lichardus-Itten, M. Fouilles franco-bulgares du site Neolithique ancien Kovacevo (Bulgarie du sud-ouest): raport préliminaire Campagnes 1986–1993), avec la collaboration de I. Kulov et M. Grebska-Kulova. Bulletin de Correspondance Hellénique 118, 2 (1994). 561618.CrossRefGoogle Scholar
Demoule, J.-P., Lichardus-Itten, M., (1998). Kovacevo. Fouilles néolithiques franco-bulgares dans la valée du Strymon. Rapport annuel mimeographies, Universite de Paris I., vol. 13, .Google Scholar
Dikaios, P. Khirokitia. Final Report on the Excavation of a Neolithic Settlement in Cyprus on Behalf of the Department of Antiquities. 1936–1946. (1953). Oxford Univ. Press, 444 Google Scholar
Düring, B. Social dimensions in the architecture of Neolithic Çatalhöyük. Anatolian Studies 51, (2001). 118.CrossRefGoogle Scholar
Düring, B. Cultural dynamics of the Central Anatolian Neolithic: the Early Ceramc Neolithic–Late Ceramic Neolithic transition. Gérard, Frédéric, and Thissen, Laurens The Neolithic of Central Anatolia Proceedings of the International CANew Table Ronde Istanbul, 23–24 November 2001. British Institute of Archaeology at Ankara and Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology at Cornell University (2002). 219236.Google Scholar
Facorellis, G., Kyparissi-Apostolika, N., and Maniatis, Y. The cave of Theopetra, Kalambaka: radiocarbon evidence for 50,000 years of human presence. Radiocarbon 43, 2B (2001). 10291048.CrossRefGoogle Scholar
Garstang, J. Prehistoric Mersin. (1953). Oxford, Google Scholar
Gasse, F. Hydrological changes in the African tropics since the last glacial maximum. Quarternary Science Reviews 19, (2000). 189212.CrossRefGoogle Scholar
Gérard, F. CANeW archaeological sites databases Central Anatolia 9th-6th millennia cal BC. (2001). Google Scholar
Gimbutas, M., Winn, S., and Shimabuku, D. (1989). Achilleion: A Neolithic Settlement in Central Greece, 6400–5600 B.C. University of California Los Angeles, Monumenta Archaeologica 14 (Los Angeles).Google Scholar
Godwin, H., and Willis, E. Cambridge University natural radiocarbon measurements V. Radiocarbon 4, (1962). 5770.CrossRefGoogle Scholar
Göktürk, E., Hillegonds, D., Lipschutz, M., and Hodder, I. Accelerator mass spectrometry dating at Çatalhöyük. Radiochimica Acta 90, (2002). 407410.CrossRefGoogle Scholar
Görsdorf, J., and Bojadžiev, J. Zur absoluten Chronologie der bulgarischen Urgeschichte. Eurasia Antiqua 2, (1996). 105173.Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S., and Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice core. Nature 366, (1993). 552554.Google Scholar
Hughen, K.A., Southon, J.R., Lehman, S.J., and Overpeck, J.T. Synchronous radiocarbon and climate shift during the last deglaciation. Science 290, 5498 (2000). 19511954.CrossRefGoogle ScholarPubMed
Johnsen, S.J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J.P., Clausen, H.B., Miller, H., Masson-Dulmeotte, V., Sveinbjørndottir, A.E., and White, J. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP GISP2, Renland and NorthGRIP. Journal Quaternary Science 16/4, (2001). 299307.CrossRefGoogle Scholar
Karul, N., (2000). Gebäude aus Flechtwerk: die archäologischen Befunde aus den neolithisch–chalkolithischen Siedlungsschichten von Hoca Çeşme, Aşag˘ı Pınar und Toptepe. Dissertation Freie Universität Berlin, (Berlin).Google Scholar
Klitgaard-Kristensen, D., Sejrup, H.P., Haflidason, H., Johnsen, S., and Spurk, M. A regional 8200 cal. yr BP cooling event in northwest Europe, induced by final stages of the Laurentide ice-sheet deglaciation?. Journal Quaternary Science 13, 2 (1998). 165169.3.0.CO;2-#>CrossRefGoogle Scholar
Kuzucuog˘lu, C. The environmental frame in Central Anatolia from the 9th to the 6th millenia cal BC. The Neolithic of Central Anatolia. Gérard, Frédéric, and Thissen, Laurens Proceedings of the International CANew Table Ronde Istanbul, 23–24 November 2001. British Institute of Archaeology at Ankara and Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology at Cornell University (2002). 3358.Google Scholar
Lawn, B. University of Pennsylvania radiocarbon dates XV. Radiocarbon 15, (1973). 367381.Google Scholar
Lawn, B. University of Pennsylvania radiocarbon dates XVIII. Radiocarbon 17, (1975). 115196.CrossRefGoogle Scholar
Le Brun, A. La stratigraphie de Khirokitia et les nouvelles dates 14C. Report Department Antiquities (1998). 2528.Google Scholar
Le Brun, A. At the other end of the sequence: The Cypriot Aceramic Neolithic as seen from Khirokitia. Swiny, S. The earliest Prehistory of Cyprus. From Colonization to Exploitation. Cyprus American Archaeological Research Institute Monograph Ser. 2 (Boston). (2001). 109118.Google Scholar
Leuenberger, M., Lang, C., and Schwander, J. Delta 15N measurements as a calibration tool for the paleothermometer and gas-ice age differences: a case study for the 8200 B.P event on GRIP ice. Journal Geophysical Research 104, 22 (1999). 163170.Google Scholar
Linick, T. La Jolla natural radiocarbon measurements VII. Radiocarbon 19, (1977). 1948.CrossRefGoogle Scholar
McDermott, F., Mattey, D.P., and Hawkesworth, C. Centennial-Scale Holocene Climate Variability Revealed by a High-Resolution Speleothem δ 18O Record from SW Ireland. Science 294, (2001). 13281331.CrossRefGoogle ScholarPubMed
Mellaart, J. Catal Hüyük West. Anatolian Studies 15, (1965). 135156.CrossRefGoogle Scholar
Mellaart, J. Excavations at Hacılar (Edinburgh). (1970). Google Scholar
Mellaart, J. The Neolithic of the Near East (London). (1975). Google Scholar
Milojčić, V., (1962). Die Deutschen Ausgrabungen auf der Argissa-Magula in Thessalien I I. Das Präkeramische Neolithikum sowie die Tier- und Pflanzenreste, . Bonn. 119pp.Google Scholar
Milojčić, V. Review of F. Schachermeyr, Das ägäische Neolithikum (Lund 1964) and E.J. Holmberg, the neolithic pottery of mainland Greece (Göteborg 1964). Germania 43, (1965). 417421.Google Scholar
Milojčić, V., (1973). Zur Frage eines präkeramischen Neolithikums in Mitteleuropa. Actes du VIIIe Congrès de l'Union internationale des sciences préhistoriques et protohistoriques. (Belgrade 1971) 248251.Google Scholar
Newton, M., and Kuniholm, P. Wiggles Worth Watching—Making Radiocarbon Work. The Case of Catal Höyük. Betancourt, Philip P., Karageorghis, Vassos, Laffineur, Robert, and Niemeier, Wolf-Dietrich Meletemata. Studies in Aegean Archaeology Presented To Malcom H. Wiener As He Enters His 65th Year (Aegaeum 20). (1999). Google Scholar
North Greenland Ice Core Project members High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, (2004). 147151.CrossRefGoogle Scholar
Özdog˘an, M. Vinča and Anatolia: a new look at a very old problem. Anatolica XIX, (1993). (173 ff.) Google Scholar
Özdog˘an, M. The beginning of Neolithic economies in Southeastern Europe. Journal European Archaeology 5/2, (1997). 133.Google Scholar
Özdog˘an, M. Hoca Çeşme: An Early Neolithic Anatolian Colony in the Balkans?. Enreiter, P. et al. Man and the Animal World in Memoriam Sándor. (1998). BökönyiArchaeolingua, Budapest. 435451.Google Scholar
Özdog˘an, M. Northwestern Turkey: Neolithic Cultures in Between the Balkans and Anatolia. In: Neolithic in Turkey. The Cradle of Civilization. (1999). Arkeoloji ve Sanat Xayınları, Istanbul.Google Scholar
Özdog˘an, M. Defining the Neolithic of Central Anatolia. Gérard, Frédéric, and Thissen, Laurens The Neolithic of Central Anatolia Proceedings of the International CANew Table Ronde Istanbul, 23–24 November 2001. British Institute of Archaeology at Ankara and Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology at Cornell University (2002). 219236.Google Scholar
Parzinger, H., and Özdog˘an, M. Die Ausgrabungen in Kırklreli und ihre Bedeutung für die Kulturbeziehungen zwischen Anatolien und dem Balkan vom Neolithikum bis zur Frühbronzezeit. Bericht der Römisch-Germanischen Kommission 76, (1996). 529.Google Scholar
Perlès, C. The Early Neolithic in Greece. The First Farming Communities in Europe. (2001). Cambridge Univ. Press, Cambridge.Google Scholar
Pyke, G., and Yiouni, P. Nea Nikomedeia I: the Excavation of an Early Neolithic Village in Northern Greece 1961–1964. (1996). The Excavation and the Ceramic Assemblage, London.Google Scholar
Rahmstorf, S. Thermohaline circulation: the current climate. Nature 421, (2003). 699 CrossRefGoogle ScholarPubMed
Ralph, R., and Stuckenrath, E. University of Pennsylvania radiocarbon dates V. Radiocarbon 4, (1962). 144159.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, E.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S.W., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 Terrestrial radiocarbon age calibration, 26–0 ka BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Reingruber, A., (2002). Die Argissa Magula in Thessalien. Das frühe und das beginnende mittlere Neolithikum im Lichte transägäischer Beziehungen.. Unpublished PhD Dissertation, University of Heidelberg, .Google Scholar
Reingruber, A. Die Argissa Magula in Thessalien: Das frühe und das beginnende mittlere Neolithikum im Lichte transägäischer Beziehungen. Archäologisches Nachrichtenblatt 9, (2004). 209214.Google Scholar
Reingruber, A., Thissen, L., (2004). CANeW 14C databases and 18C charts. Aegean Catchment (E Greece, S Balkans and W Turkey), 10,000–5500 calBC (www.canew.org/aegeandata.htm).Google Scholar
Renssen, H., Goosse, H., Fichefet, T., and Camin, J.-M. The 8.2 kyr BP event simulated by a global atmosphere–sea–ice–ocean model. Geophysical Research Letters 28, (2001). 15671570.Google Scholar
Renssen, H., Goosse, H., Fichefet, T., and Camin, J. Modeling the effect of freshwater pulses on the early Holocene climate: the influence of high-frequency climate variability. Palaeoceanography 17/2, (2002). 16.Google Scholar
Rodden, R.J. Excavations at the early neolithic site at nea nikomedeia, Greek Macedonia (1961 season). Proceedings Prehistoric Society 28, (1962). 267268.Google Scholar
Rodden, R.J., Wardle, K.A., (Eds.), (1996). Nea Nikomedeia: The Excavation of an Early Neolithic Village in Northern Greece 1961–1963: The Excavation and the Ceramic Assemblage. Athens: British School at Athens, . Ekdotike Athenon S.A.Google Scholar
Rollefson, G. Local and regional relations in the levantine PPN period: 'Ain Ghazal as a regional center. Studies in the History and Archaeology of Jordan 3, (1987). 2932.Google Scholar
Rubin, M., and Alexander, C. U.S. Geological survey radiocarbon dates V. Radiocarbon 2, (1960). 129185.Google Scholar
Schubert, H. Die bemalte Keramik des Frühneolithikums in Südosteuropa, Italien und Westanatolien. Internationale Archäologie 47, (1999). 250 (Rahden/Westfalen) Google Scholar
Schmidt, B., and Gruhle, W. Niederschlagsschwankungen in Westeuropa während der letzten 8000 Jahre. Versuch einer Rekonstruktion mit Hilfe eines neuen dendrochronologischen Verfahrens (Grad der Wuchshomogenität). Archäologisches Korrespondenzblatt 33, (2003). 281300.Google Scholar
Shackleton, N. Stable isotope study of the palaeoenvironment of the neolithic site of nea nikomedeia, Greece. Nature (London) 227, (1970). 943944.CrossRefGoogle ScholarPubMed
Siani, G., Paterne, M., Michel, E., Sulpizio, R., Sbrana, A., Arnold, M., and Haddad, G. Mediterranean sea surface radiocarbon reservoir age changes since the last glacial maximum. Science 294, (2001). 19171920.Google Scholar
Spittler, G., (1989a). Dürren, Krieg und Hungerkrisen bei den Kel Ewey (1900–1985). Studien zur Kulturkunde 89, Veröffentlichungen des Frobenius-Instituts an der Johannn Wolfgang Goethe-Universität zu Frankfurt/Main, Eike Haberland (Hrsg.), Franz Steiner Verlag Wiesbaden GmbH (Stuttgart), .Google Scholar
Spittler, G. Handeln in einer Hungerkrise. Tuaregnomaden und die groβe Dürre von 1984 (Opladen). (1989). Google Scholar
Spooner, I., Douglas, M.S.V., and Terrusi, L. Multiproxy evidence of an early Holocene (8.2 kyr) climate oscillation in central Nova Scotia, Canada. Journal Quaternary Science 17, 7 (2002). 639645.Google Scholar
Staubwasser, M., Sirocko, F., Grootes, P.M., and Segl, M. Climate Change at the 4.2 ka BP termination of the Indus Valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters 30, 8 (2003). 7.17.4.CrossRefGoogle Scholar
Stuckenrath, R. University of Pennsylvania radiocarbon dates X. Radiocarbon 9, (1967). 333345.Google Scholar
Stuckenrath, R., and Lawn, B. University of Pennsylvania radiocarbon dates XI. Radiocarbon 11, (1969). 150162.Google Scholar
Stuckenrath, R., and Ralph, E. University of Pennsylvania radiocarbon dates VIII. Radiocarbon 7, (1965). 187199.Google Scholar
Teller, J.T., Leverington, D.W., and Mann, J.D. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews 21, (2002). 879887.Google Scholar
Thissen, L., Cessford, C., Newton, M., (2004). CANew 14C-databases and 14C-charts Central Anatolia and Cilicia. (http://www.canew.net).Google Scholar
Tinner, W., and Lotter, A.F. Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29, 6 (2001). 551554.2.0.CO;2>CrossRefGoogle Scholar
Todorova, H., (1989). Das Frühneolithikum Nordostbulgariens in Kontext des Ostbalkanischen Neolithikums. In: Heger, N., St. Hiller, (Hrsg.), Tell Karanovo und das Balkan-Neolithikum.-In Gesammelte Beiträge zum internationalen Kolloquium in Salzburg. 20–22 Oktober 1988, Salzburg., 925.Google Scholar
Todorova, H. Der Balkano-Anatolische Kulturbereich vom Neolithikum bis zur Frühbronzezeit (Stand der Forschung). Stefanovich, Mark James Harvey Gaul In Memoriam. Sofia (1998). 2754.Google Scholar
Todorova, H., (2003). Neue Angaben zur Neolithisierung der Balkanhalbinsel. In: Jerem, E., Raczki, P. (Hrsg.), Morgenrot der Kulturen. Frühe Etappen der Menschheitsgeschichte in Mittel- und Südosteurop. Festschrift für Nandor Kalizc zum 75, . Geburtstag, Budapest., 8388.Google Scholar
Todd, I.A. Radiocarbon dates for kalavasos-tenta and kalavasos-ayious. Report of the Department of Antiquities (1982). 811.Google Scholar
Todd, I.A. Excavations at kalavasos-tenta. Studies in Mediterranean Archaeology LXXXI, 6 (1987). 205 Google Scholar
Uerpmann, H.-P. The origin and relations of neolithic sheep and goats in the western mediterranean. Guilaine, J., Courtin, J., Roudil, J.-L., and Vernet, J.-L. Premières communautés paysannes en mediterranée occidentale (Paris). (1987). 176179.Google Scholar
Van Andel, T.H. Coastal migrants in a changing world?—An essay on the mesolithic in the eastern mediterranean. Journal of The Israel Prehistoric Society 35, (2005). 381396.Google Scholar
van Andel, T.H., and Runnels, C.N. The earliest farmers in Europe. Antiquity 69, (1995). 481500.Google Scholar
Vinther, B.M., Clausen, H.B., Johnsen, S.J., Rasmussen, S.O., Andersen, K.K., Buchardt, S.L., Dahl-Jensen, D., Seierstad, I.K., Siggaard-Andersen, M.-L., Steffensen, J.P., Svensson, A.M., Olsen, J., and Heinemeier, J. A synchronized dating of three greenland ice cores throughout the holocene. Journal Geophysical Research (2006). doi:http://dx.doi.org/10.1029/2005JD006921CrossRefGoogle Scholar
Vitelli, K.D. Franchthi neolithic pottery 1. Classification and ceramic phases 1 and 2. excavations at Franchthi cave, Greece. Fasc 8, (1993). (Bloomington, Indianapolis) Google Scholar
Vogel, J., Waterbolk, H. Radiocarbon 5, (1963). 182 Google Scholar
Vogel, J., Waterbolk, H. Radiocarbon 14, (1972). 6110.Google Scholar
Von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., and Johnsen, S.J. A mid-european decadal isotope-climate record from 15,500 to 5000 years B.P.. Science 284, 5420 (1999). 16541657.Google Scholar
Weiss, H., Courty, M.-A., Wetterstrom, W., Guichard, G., Senior, L., Meadow, R., and Curnow, A. The genesis and collapse of third millenium north mesopotamian civilitation. Science 261, (1993). 9951003.Google Scholar
Weninger, B., (1986). High-precision calibration of archaeological radiocarbon dates. Acta Interdisciplinaria Archaeolica IV, 1153. Nitra. (www.calpal.de).Google Scholar
Weninger, B. Statistische Auswertung der Radiokohlenstoffdaten des Oberlausitzer Eisenprojektes. Oexle, Hrsg.Judith, and Heimann, Robert H. Arbeits-und Forschungsberichte zur Sächsischen Bodendenkmalpflege. Band 42, (2000). 215233.Google Scholar
Weninger, B., Alram-Stern, E., Bauer, E., Clare, L., Danzeglocke, U., Jöris, O., Kubatzki, C., Rollefson, G., and Todorova, H. Die Neolithisierung von Südosteuropa als Folge des abrupten Klimawandels um 8200 calBP. Gronenborn (Hrsg.), Detlef Klimaveränderung und Kulturwandel in neolithischen Gesellschaften Mitteleuropas 6700–22 v. Chr. RGZM-Tagungen Band vol. 1, (2006). 75117.Google Scholar
Wijnen, M.H.J.M.N. The Early Neolithic I Settlement at Sesklo. An Early Farming Community in Thessaly, Greece. Analecta Praehistorica Leidensia 14 (Leiden). (1981). Google Scholar
Yu, Z., and Eicher, U. Abrupt climate oscillations during the last deglaciation in central North Americain. Science 282, (1998). 22352238.CrossRefGoogle Scholar
Zilhão, J. The Neolithic Transition in Portugal and the Role of Demic Diffusion in the Spread of Agriculture across West Mediterranean Europe. Ammermann, Albert J., and Biagi, Paolo The Widening Harvest. Colloquia and Conference Papers 6, (1998). Archaeological Institute of America, Boston. 207223.Google Scholar