Hostname: page-component-599cfd5f84-cdgjw Total loading time: 0 Render date: 2025-01-07T06:13:18.709Z Has data issue: false hasContentIssue false

Climate change on the Yucatan Peninsula during the Little Ice Age

Published online by Cambridge University Press:  20 January 2017

David A. Hodell*
Affiliation:
Department of Geological Sciences and Land Use and Environmental Change Institute (LUECI), University of Florida, Gainesville, FL 32611, USA
Mark Brenner
Affiliation:
Department of Geological Sciences and Land Use and Environmental Change Institute (LUECI), University of Florida, Gainesville, FL 32611, USA
Jason H. Curtis
Affiliation:
Department of Geological Sciences and Land Use and Environmental Change Institute (LUECI), University of Florida, Gainesville, FL 32611, USA
Roger Medina-González
Affiliation:
Departamento de Ecologia, Universidad Autónoma de Yucatán, Merida, Yucatán, México
Enrique Ildefonso-Chan Can
Affiliation:
Departamento de Ecologia, Universidad Autónoma de Yucatán, Merida, Yucatán, México
Alma Albornaz-Pat
Affiliation:
Departamento de Ecologia, Universidad Autónoma de Yucatán, Merida, Yucatán, México
Thomas P. Guilderson
Affiliation:
Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
*
*Corresponding author. Fax: +1 352 392 9294.E-mail address:[email protected] (D.A. Hodell).

Abstract

We studied a 5.1-m sediment core from Aguada X'caamal (20° 36.6′N, 89° 42.9′W), a small sinkhole lake in northwest Yucatan, Mexico. Between 1400 and 1500 A.D., oxygen isotope ratios of ostracod and gastropod carbonate increased by an average of 2.2‰ and the benthic foraminifer Ammonia beccarii parkinsoniana appeared in the sediment profile, indicating a hydrologic change that included increased lake water salinity. Pollen from a core in nearby Cenote San José Chulchacá showed a decrease in mesic forest taxa during the same period. Oxygen isotopes of shell carbonate in sediment cores from Lakes Chichancanab (19° 53.0′N, 88° 46.0′W) and Salpeten (16° 58.6′N, 89° 40.5′W) to the south also increased in the mid-15th century, but less so than in Aguada X'caamal. Climate change in the 15th century is also supported by historical accounts of cold and famine described in Maya and Aztec chronicles. We conclude that climate became drier on the Yucatan Peninsula in the 15th century A.D. near the onset of the Little Ice Age (LIA). Comparison of results from the Yucatan Peninsula with other circum-Caribbean paleoclimate records indicates a coherent climate response for this region at the beginning of the LIA. At that time, sea surface temperatures cooled and aridity in the circum-Caribbean region increased.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Black, D.E., Peterson, L.C., Overpeck, J.T., Kaplan, A., Evans, M., Kashgarian, M., (1999). Eight centuries of North Atlantic ocean-atmosphere variability. Science 286, 17091713.CrossRefGoogle ScholarPubMed
Black, D.E., Thunell, R.C., Kaplan, A., Peterson, L.C., Tappa, E.J., (2004). A 2000-year record of Caribbean and tropical North Atlantic hydrographic variability. Paleoceanography 19, .CrossRefGoogle Scholar
Boose, E.R., Foster, D.R., Barker Plotkin, A., Hall, B., (2003). Geographical and historical variation in hurricanes across the Yucatan Peninsula. Gomez-Pompa, A., Allen, M.F., Fedick, S.L., Jimenez-Osornio, J.J., The Lowland Maya: Three Millennia at the Human–Wildland Interface. Haworth Press, Binghamton., 495516.Google Scholar
Brenner, M., Leyden, B.W., Curtis, J.H., Medina González, R.M., Dahlin, B.H., (2000). Un registro de 8000 anos del paleoclima del noroeste de Yucatan, Mexico. Revista de la Universidad Autónoma de Yucatán 213, 5265.Google Scholar
Bronk Ramsey, C., (1998). Probability and dating. Radiocarbon 40, 461474.CrossRefGoogle Scholar
Cann, J.H., De Deckker, P., (1981). Fossil Quaternary and living foraminifera from athalassic (non-marine) saline lakes, southern Australia. Journal of Palaeontology 55, 660670.Google Scholar
Covich, A.P., Stability of molluscan communities: a paleolimnologic study of environmental disturbance in the Yucatan Peninsula. Ph.D dissertation, , Yale University., .Google Scholar
Covich, A., Stuiver, M., (1974). Changes in oxygen 18 as a measure of long-term fluctuations in tropical lake levels and molluscan populations. Limnology and Oceanography 19, 682691.CrossRefGoogle Scholar
Craine, E.R., Reindorp, C., (1979). The Codex Perez and the Book of Chilam Balam of Mani. University of Oklahoma Press, Norman., 209 pp.Google Scholar
Curtis, J.H., Hodell, D.A., Brenner, M., (1996). Climate variability on the Yucatan Peninsula (Mexico) during the past 3500 yr, and implications for Maya cultural evolution. Quaternary Research 46, 3747.CrossRefGoogle Scholar
Curtis, J.H., Brenner, M., Hodell, D.A., Balser, R.A., Islebe, G.A., Hooghiemstra, H., (1998). A multi-proxy study of Holocene environmental change in the Maya Lowlands of Peten, Guatemala. Journal of Paleolimnology 19, 139159.CrossRefGoogle Scholar
De Deckker, P., (1982). Holocene ostracods, other invertebrates and fish remains from cores of four Maar lakes in southern Australia. Proceedings of the Royal Society of Victoria 94, 4 183220.Google Scholar
deMenocal, P., Ortiz, J., Guilderson, T., Sarnthein, M., (2000). Coherent high- and low-latitude variability during the Holocene warm period. Science 288, 21982202.CrossRefGoogle ScholarPubMed
Deevey, E.S., Stuiver, M., (1964). Distribution of natural isotopes of carbon in Linsley Pond and other New England lakes. Limnology and Oceanography 9, 111.CrossRefGoogle Scholar
Fagan, B., (2000). The Little Ice Age. Basic Books, New York., 246 pp.Google Scholar
Fisher, M.M., Brenner, M., Reddy, K.R., (1992). A simple, inexpensive piston corer for collecting undisturbed sediment/water interface profiles. Journal of Paleolimnology 7, 157161.CrossRefGoogle Scholar
Flores-Nava, A., (1994). Some limnological data from five water bodies of Yucatan as a basis for agriculture development. Anales del Instituto de Ciencias del Mar y Limnologia 1–2, 21 1153.Google Scholar
Fontes, J.C., Gonfiantini, R., (1967). Component isotopique au cours de l'evaporation de deux basins sahariens. Earth and Planetary Science Letters 3, 258266.CrossRefGoogle Scholar
Garcia, A., (1999). Charophyte flora of southeastern South Australia and southwestern Victoria, Australia: systematics, distribution and ecology. Australian Journal of Botany 47, 407426.CrossRefGoogle Scholar
Gessner, F., Hydrobotanik. Die Physiologischen Grundlagen der Pflanzenverbreitung im Wasser. II.. Stoffhaushalt, Berlin, VEB Deutscher Verlag der Wissenschaftern, 701 pp.Google Scholar
Giannini, A., Kushnir, Y., Cane, M.A., (2000). Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. Journal of Climate 13, 297311.2.0.CO;2>CrossRefGoogle Scholar
Giannini, A., Kushnir, Y., Cane, M.A., (2001). Seasonality in the impact of ENSO and the North Atlantic high on Caribbean rainfall.. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 26, 143147.CrossRefGoogle Scholar
Giddings, L., Soto, M., (2003). Rhythms of precipitation in the Yucatan Peninsula. Gomez-Pompa, A., Allen, M.F., Fedick, S.L., Jimenez-Osornio, J.J., The Lowland Maya: Three Millennia at the Human–Wildland Interface. Haworth Press, Binghamton., 7789.Google Scholar
Gill, R.B., (2000). The Great Maya Droughts: Water, Life, and Death. University of New Mexico Press, Albuquerque., 464 pp.Google Scholar
Gray, C.R., (1993). Regional meteorology and hurricanes. Maul, G.A., Climatic Change in the Intra-Americas Sea. Edward Arnold, London., 8799.Google Scholar
Grove, J.M., (1988). The Little Ice Age. Methuen, New York., 498 pp.Google Scholar
Hastenrath, S., (1984). Interannual variability and the annual cycle: mechanisms of circulation and climate in the tropical Atlantic sector. Monthly Weather Review 112, 10971107.2.0.CO;2>CrossRefGoogle Scholar
Hastenrath, S., (1991). Climate Dynamics of the Tropics. Kluwer Academic Publishers, Dordrecht, Netherlands., 488 pp.Google Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Röhl, U., (2001). Southward migration of the Intertropical Convergence Zone through the holocene. Science 293, 13041308.Google Scholar
Hildebrand, A.R., Pilkington, M., Connors, M., Ortiz-Aleman, C., Chavez, R.E., (1995). Size and structure of the Chicxulub crater revealed by horizontal gravity gradients and cenotes. Nature 376, 415417.Google Scholar
Hodell, D.A., Curtis, J.H., Jones, G.A., Higuera-Gundy, A., Brenner, M., Binford, M.W., Dorsey, K.T., (1991). Reconstruction of Caribbean climate change over the past 10,500 years. Nature 352, 790793.Google Scholar
Hodell, D.A., Curtis, J.H., Brenner, M., (1995). Possible role of climate in the collapse of Classic Maya civilization. Nature 375, 391394.CrossRefGoogle Scholar
Hodell, D.A., Brenner, M., Curtis, J.H., Guilderson, T., (2001). Solar forcing of drought frequency in the Maya Lowlands. Science 292, 13671369.Google Scholar
Hodell, D.A., Brenner, M., Curtis, J.H., in press. Terminal Classic drought in the northern Maya Lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico).. Quaternary Science Reviews. .Google Scholar
Instituto Nacional de Estadistica Geographia e Informatica (INEGI), 1981. 1:1000000 Merida, Carta de Precipitation. Merida, Yucatán, Mexico.Google Scholar
Keigwin, L.D., (1996). The Little Ice Age and Medieval Warm Period in the Sargasso Sea. Science 274, 15041508.CrossRefGoogle ScholarPubMed
Kreutz, K.J., Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S.I., Pittalwala, I.I., (1997). Bipolar changes in atmospheric circulation during the Little Ice Age. Science 277, 12941296.CrossRefGoogle Scholar
Lawrence, J.R., (1998). Isotopic spikes from tropical cyclones in surface waters: opportunities in hydrology and paleoclimatology. Chemical Geology 144, 153160.CrossRefGoogle Scholar
Lawrence, J.R., Gedzelman, D., Zhang, X., Arnold, R., (1998). Stable isotope ratios of rain and vapor in 1995 hurricanes. Journal of Geophysical Research 103, 1138211400.CrossRefGoogle Scholar
Leyden, B.W., Brenner, M., Whitmore, T., Curtis, J.H., Piperno, D.R., Dahlin, B.H., (1996). A record of long- and short-term climatic variation from northwest Yucatán: Cenote San José Chulchacá. Fedick, S.L., The Managed Mosaic: Ancient Maya Agriculture and Resource Use. University of Utah Press, Salt Lake City., 3050.Google Scholar
Lund, D.C., Curry, W.B., (2004). Late Holocene variability in Florida Current surface density: patterns and possible causes. Paleoceanography 19, PA4001(doi:10.1029/2004PA001008).Google Scholar
Magaña, V., Amador, J.A., Medina, S., (1999). The midsummer drought over Mexico and Central America. Journal of Climate 12, 15771588.2.0.CO;2>CrossRefGoogle Scholar
Mann, M.E., Bradley, R.S., Hughes, M., (1999). Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophysical Research Letters 26, 759762.Google Scholar
Marin, L., Field investigations and numerical simulation of ground-water flow in the karstic aquifer of northwestern Yucatan, Mexico.. Ph.D Dissertation, . Northern Illinois University., 183 pp.Google Scholar
Milbrath, S., Peraza, C., (2003). Revisiting Mayapan: Mexico's last Maya capital. Ancient Mesoamerica 14, 146.Google Scholar
Nyberg, J., Malmgren, B.A., Kuijpers, A., Winter, A., (2002). A centennial-scale variability of tropical North Atlantic surface hydrography during the late Holocene. Palaeogeography Palaeoclimatology Palaeoecology 183, 2541.Google Scholar
O'Brien, S.R., Mayewski, P.A., Meeker, L.D., Meese, D.A., Twickler, M.S., Whitlow, S.I., (1995). Complexity of holocene climate as reconstructed from a Greenland Ice Core. Science 270, 19621964.Google Scholar
Perry, E.C., Marin, L.E., McClain, J., Velazquez, G., (1995). The ring of cenotes (sinkholes) northwest Yucatan, Mexico: its hydrogeologic characteristics and association with the Chicxulub impact crater. Geology 23, 1720.Google Scholar
Perry, E., Velazquez-Oliman, G., Marin, L., (2002). The hydrogeochemistry of the karst aquifer system of the northern Yucatan Peninsula Mexico. International Geology Review 44, 191221.CrossRefGoogle Scholar
Perry, E., Velazquez-Oliman, G., Socki, R.A., (2003). Hydrogeology of the Yucatán Peninsula. Gomez-Pompa, A., Allen, M.F., Fedick, S.L., Jimenez-Osornio, J.J., The Lowland Maya: Three Millennia at the Human–Wildland Interface. Haworth Press, Binghamton., 115138.Google Scholar
Pope, K.O., Ocampo, A.C., Kinsland, G.L., Smith, R., (1996). Surface expression of the Chicxulub crater. Geology 24, 527530.2.3.CO;2>CrossRefGoogle ScholarPubMed
Rosenmeier, M.F., Hodell, D.A., Brenner, M., Curtis, J.H., (2002). A 4000-year lacustrine record of environmental change in the southern Maya lowlands, Peten, Guatemala. Quaternary Research 57, 183190.CrossRefGoogle Scholar
Rozanski, K., Araguá-Araguá, L., Gonfiantini, R., (1993). Isotopic patterns of modern global precipitation. Swart, P.K., Lohmann, K.C., McKenzie, J.A., Savin, S., Climate change in continental isotopic records. American Geophysical Union, Washington., 136.Google Scholar
Socki, R.A., Perry, E.C., Romanek, C.S., (2002). Stable isotope systematics of two cenotes from the northern Yucatan Peninsula, Mexico. Limnology and Oceanography 47, 18081818.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., van der Plicht, J., Spurk, M., (1998). INTCAL98 Radiocarbon Age Calibration 24,000–0 cal B.P. Radiocarbon 40, 10411083.CrossRefGoogle Scholar
Schmitter-Soto, J.J., Comin, F.A., Escobar-Briones, E., Herrera-Silveira, J., Alcocer, J., Suarez-Morales, E., Diaz-Arce, V., Marin, L.E., Stenich, B., (2002). Hydrogeochemical and biological characteristics of denotes in the Yucatán Peninsula (SE Mexico). Hydrobiologia 467, 215228.Google Scholar
Stenich, B., Marin, L.E., (1997). Determination of flow characteristics in the aquifer in northwest Yucatan Mexico. Journal of Hydrology 191, 315331.Google Scholar
Waliser, D.E., Shi, Z., Lanzante, J.R., Oort, A.H., (1999). The Hadley circulation: assessing NCDP/NCAR reanalysis and sparse in-situ estimates. Climate Dynamics 15, 719735.CrossRefGoogle Scholar
Watanabe, T., Winter, A., Oba, T., (2001). Seasonal changes in sea surface temperature and salinity during the Little Ice Age in the Caribbean Sea deduced from Mg/Ca and 18O/16O ratios in corals. Marine Geology 173, 2135.Google Scholar
White, D.A., Hood, C.S., (2004). Vegetation patterns and environmental gradients in tropical dry forests of the northern Yucatan Peninsula. Journal of Vegetation Science 15, 151161.CrossRefGoogle Scholar
Whitmore, T.J., Brenner, M., Rood, B.E., Japy, K.E., (1991). Deoxygenation of a Florida lake during winter mixing. Limnology and Oceanography 36, 577585.CrossRefGoogle Scholar
Whitmore, T.J., Brenner, M., Curtis, J.H., Dahlin, B.H., Leyden, B.W., (1996). Holocene climatic and human influences on lakes of the Yucatan Peninsula, Mexico: an interdisciplinary, paleolimnological approach. The Holocene 6, 273287.Google Scholar
Wilson, E.M., (1980). Physical geography of the Yucatan Peninsula. Moseley, E., Terry, E.D., Yucatan: A World Apart. University of Alabama Press, 540.Google Scholar
Winter, A., Ishioroshi, H., Watanabe, T., Oba, T., Christy, J., (2000). Caribbean sea surface temperatures: two-to-three degrees cooler than present during the Little Ice Age. Geophysical Research Letters 27, 33653368.Google Scholar