Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T23:21:18.409Z Has data issue: false hasContentIssue false

Climate, agriculture, and cycles of human occupation over the last 4000 yr in southern Zacatecas, Mexico

Published online by Cambridge University Press:  20 January 2017

Michelle Elliott*
Affiliation:
UMR 8096, “Archéologie des Amériques,” CNRS, Maison René Ginouvès, 21, Allée de l'Université, 92023 Nanterre, France
Christopher T. Fisher
Affiliation:
Department of Anthropology, Colorado State University, Fort Collins, CO 80523-1787, USA
Ben A. Nelson
Affiliation:
School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287-2402, USA
Roberto S. Molina Garza
Affiliation:
Centro de Geociencias, Campus Juriquilla Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
Shawn K. Collins
Affiliation:
Sandstone Archaeology, L.L.C, Mancos, CO 81328, USA
Deborah M. Pearsall
Affiliation:
Paleoethnobotany Laboratory, University of Missouri, Columbia, MO 65211, USA
*
Corresponding author. E-mail address:[email protected] (M. Elliott).

Abstract

Scholars attribute the growth and decline of Classic period (AD 200–900) settlements in the semi-arid northern frontier zone of Mesoamerica to rainfall cycles that controlled the extent of arable land. However, there is little empirical evidence to support this claim. We present phytolith, organic carbon, and magnetic susceptibility analyses of a 4000-yr alluvial record of climate and human land use from the Malpaso Valley, the site of one such Classic frontier community. The earliest farming occupation is detected around 500 BC and appears related to a slight increase of aridity, similar to the level of the modern day valley. By AD 500, the valley's Classic period Mesoamerican settlements were founded under these same dry conditions, which continued into the Postclassic period. This indicates that the La Quemada occupation did not develop during a period of increased rainfall, but rather an arid phase. The most dramatic changes detected in the valley resulted from the erosion associated with Spanish Colonial grazing and deforestation that began in the 16th century. The landscape of the modern Malpaso Valley is thus primarily the product of a series of intense and rapid transformations that were concentrated within the last 400 yr.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armillas, P. Condiciones Ambientales y Movimientos de Pueblos en la Frontera Septentrional de Mesoamérica. Homenaje a Fernando Márquez-Miranda.. (1964). Publicaciones del Seminario de Estudios Americanistas y Seminario de Antropología Americana, Universidades de Madrid y Sevilla, Madrid, Spain. 6282.Google Scholar
Bakewell, P.J. Silver Mining and Society in Colonial Mexico: Zacatecas, 1546–1700.. (1971). University Press, Cambridge.Google Scholar
Barboni, D., Bonnefille, R., Alexandre, A., and Meunier, J.D. Phytoliths as paleoenvironmental indicators, West Side Middle Awash Valley, Ethiopia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 152, (1999). 87100.Google Scholar
Braniff, B., and Hers, M.-A. Herencias Chichimecas. Arqueología 19, (1998). 5580.Google Scholar
Brown, R.B. Arqueología y Paleoecología del Norcentro de México.. (1992). Insituto Nacional de Antropología e Historia, Mexico City.Google Scholar
Caballero, M., Ortega, B., Valadez, F., Metcalfe, S., Macias, J.L., and Sugiura, Y. Sta. Cruz Atizapan: a 22-ka lake level record and climatic implications for the Late Holocene human occupation in the upper Lerma Basin, Central Mexico. Palaeogeogr. Palaeoclimatol. Palaeoecol. 186, (2002). 217235.Google Scholar
Coe, M.D. Mexico. (1994). Thames and Hudson, London.Google Scholar
Conserva, M.E., and Byrne, R. Late Holocene vegetation change in the Sierra Madre Oriental of Central Mexico. Quatern. Res. 58, (2002). 122129.Google Scholar
Córdova, C.E., and Parsons, J.R. Geoarchaeology of an Aztec dispersed village on the Texcoco Piedmont of Central Mexico. Geoarchaeology 12, (1997). 177210.Google Scholar
Dunning, N.P., Luzzadder-Beach, S., Beach, T., Jones, J.G., Scarborough, V., and Culbert, T.P. Arising from the Bajos: the evolution of a neotropical landscape and the rise of Maya civilization. Ann. Assoc. Am. Geogr. 92, (2002). 267283.Google Scholar
Elliott, M. Evaluating evidence for warfare and environmental stress in settlement pattern data from the Malpaso Valley, Zacatecas, Mexico. J. Anthropol. Archaeol. 24, (2005). 297315.CrossRefGoogle Scholar
Evans, M.E., and Heller, F. Environmental Magnetism: Principles and Applications of Enviromagnetics. (2003). Academic Press, London, UK.Google Scholar
Fisher, C.T., and Feinman, G.M. Introduction to “Landscapes Over Time”. Am. Anthropol. 107, (2005). 6269.Google Scholar
Fisher, C.T., Pollard, H.P., Israde-Alcantara, I., Garduno-Monroy, V.H., and Banerjee, S.K. A reexamination of human-induced environmental change within the Lake Patzcuaro Basin, Michoacan, Mexico. Proc. Natl. Acad. Sci. 100, (2003). 49574962.Google Scholar
Frederick, C. D. (1995). “Fluvial Response to Late Quaternary Climate Change and Land Use in Central Mexico..” Unpublished Ph.D. Dissertation thesis, University of Texas, Austin.Google Scholar
Gunn, J., and Adams, R.E.W. Climate change, culture, and civilization in North America. World Archaeol. 13, (1981). 87100.Google Scholar
Haug, G.H., Gunther, D., Peterson, L.C., Sigman, D.M., Hughen, K.A., and Aeschlimann, B. Climate and the collapse of Maya Civilization. Science 299, (2003). 17311735.Google Scholar
Heiri, O., Lotter, A.F., and Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25, (2001). 101110.Google Scholar
Jiménez Betts, P., and Darling, J.A. The archaeology of southern Zacatecas: the Malpaso, Juchipila, and Valparaiso-Bolaños Valleys. Foster, M.S., and Gorenstein, S. Greater Mesoamerica: The Archaeology of West and Northwest Mexico.. (2000). The University of Utah Press, Salt Lake City. 155180.Google Scholar
Jiménez Moreno, W. Mesoamerica before the Toltecs. Paddock, J. Ancient Oaxaca: Discoveries in Mexican Archeology and History.. (1966). Stanford University Press, Stanford, California. 182.Google Scholar
Maher, B.A. Magnetic properties of modern soils and Quaternary loessic paleosols: Paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 137, (1998). 2554.CrossRefGoogle Scholar
Matson, J.O., and Baker, R.H. Mammals of Zacatecas. (1986). Texas Tech University Press, Lubbock.Google Scholar
Metcalfe, S.E., Hales, P.E., (1994). Holocene Diatoms from a Mexican Crater Lake - La Piscina de Yuriria. In: Kociolek, P. (Ed.), Proceedings of the 11th International Diatom Symposium, San Francisco., pp. 501515.Google Scholar
Metcalfe, S.E., Street-Perrott, F.A., Brown, R.B., Hales, P.E., Perrott, R.A., and Steininger, F. Late Holocene human impact on Lake Basins in Central Mexico. Geoarchaeology 4, (1989). 119141.CrossRefGoogle Scholar
Metcalfe, S.E., Street-Perrott, F.A., Perrott, R.A., and Harkness, D.D. Palaeolimnology of the Upper Lerma Basin, Central Mexico: a record of climatic change and anthropogenic disturbance since 11, 600 yr BP. J. Paleolimnol. 5, (1991). 197218.CrossRefGoogle Scholar
Metcalfe, S.E., Street-Perrott, F.A., O’Hara, S.L., Hales, P.E., and Perrott, R.A. The palaeolimnological record of environmental change: Examples from the arid frontier of Mesoamerica. Millington, A.C., and Pye, K. Environmental Change in Drylands: Biogeographical and Geomorphological Perspectives. (1994). John Wiley and Sons Ltd., Chichester. 131145.Google Scholar
Metcalfe, S.E., Bimpson, A., Courtice, A.J., O'Hara, S.L., and Taylor, D.M. Climate change at the monsoon/westerly boundary in Northern Mexico. J. Paleolimnol. 17, (1997). 155171.CrossRefGoogle Scholar
Michelet, D. Río Verde, San Luis Potosí, México. (1996). INAH, Instituto de Cultura de San Luis Potosí-Lascasiana, CEMCA, Mexico City.Google Scholar
Nelson, B.A. Complexity, hierarchy, and scale: a controlled comparison between Chaco Canyon, New Mexico, and La Quemada, Zacatecas. Am. Antiquity 60, (1995). 597618.Google Scholar
Nelson, B.A. Chronology and stratigraphy at La Quemada, Zacatecas, Mexico. J. Field Archaeol. 24, (1997). 85109.Google Scholar
Nelson, B.A. A place of continued importance: the abandonment of Epiclassic La Quemada. Inomata, T., and Webb, R.W. The Archaeology of Site Abandonment in Middle America.. (2003). Westview Press, Boulder. 7789.Google Scholar
O'Hara, S.L., Street-Perrott, F.A., and Burt, T.P. Accelerated soil erosion around a Mexican highland lake caused by prehispanic agriculture. Nature 362, (1993). 4851.Google Scholar
Palerm, A., and Wolf, E. Ecological Potential and Cultural Development in Mesoamerica. Monograph No. 3. (1957). Anthropological Society of Washington and Pan American Union, 137.Google Scholar
Parsons, J.R., and Parsons, M.H. Maguey Utilization in Highland Central Mexico: An Archaeological Ethnography.. (1990). Museum of Anthropology, University of Michigan, Ann Arbor.Google Scholar
Pearsall, D.M. Paleoethnobotany: A Handbook of Procedures.. (2000). Academic Press, San Diego.Google Scholar
Peters, C., and Thompson, R. Superparamagnetic enhancement, superparamagnetism and archeological soils. Geoarcheology 13, (1998). 401413.Google Scholar
Rzedowski, J. Vegetación de México.. (1981). Editorial Limusa, Mexico City.Google Scholar
Secretaría De Programación y Presupuesto Síntesis Geográfica de Zacatecas. Coordinación General de los Servicios Nacionales de Estadística, Geografía e Informática, México, DF. (1981). Google Scholar
Sugiura, Y., Flores, A., Ludlow, B., Valadez, F., Gold, M., and Maillol, J.-M. El Agua, la Tierra, el Bosque y el Hombre en el Alto Lerma: un Estudio Multidisciplinario - Resultados Preliminares. Arqueología 11–12, (1994). 2945.Google Scholar
Trombold, C.D. Causeways in the context of strategic planning in the La Quemada Region, Zacatecas, Mexico. Trombold, C.D. Ancient Road Networks and Settlement Hierarchies in the New World.. (1991). Cambridge University Press, Cambridge. 145168.Google Scholar
Trombold, C.D. A population estimate for the Epiclassic Middle Malpaso Valley (La Quemada), Zacatecas, Mexico. Lat. Am. Antiquity 16, (2005). 235253.Google Scholar
Trombold, C.D., and Israde-Alcantara, I. Paleoenvironment and plant cultivation on terraces at La Quemada, Zacatecas, Mexico: the pollen, phytolith and diatom evidence. J. Archaeol. Sci. 32, (2005). 341353.Google Scholar
Turkon, P. Food and status in the prehispanic Malpaso Valley, Zacatecas, Mexico. J. Anthropol. Archaeol. 23, (2004). 225251.Google Scholar
Twiss, P.C. Predicted world distribution of C3 and C4 grass phytoliths. Rapp, G., Mulholland, S. Phytolith Systematics: Emerging Issues (1992). Plenum Press, New York.Google Scholar
Weigand, P.C. The prehistory of the State of Zacatecas: an interpretation, part II. Anthropology 2, (1978). 103117.Google Scholar
Supplementary material: PDF

Elliott et al. Supplementary Material

Supplementary Material

Download Elliott et al. Supplementary Material(PDF)
PDF 142.9 KB