Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T06:18:10.690Z Has data issue: false hasContentIssue false

Cirque glacier activity in arctic Norway during the last deglaciation

Published online by Cambridge University Press:  20 January 2017

Øyvind Paasche*
Affiliation:
Department of Earth Science, University of Bergen, Allégt. 41, N-5007 Bergen, Norway Bjerknes Centre for Climate Research, Allégt. 55, N-5007, Bergen, Norway
Svein Olaf Dahl
Affiliation:
Bjerknes Centre for Climate Research, Allégt. 55, N-5007, Bergen, Norway Department of Geography, University of Bergen Fosswinkelsgt. 6, N-5020, Bergen, Norway
Jostein Bakke
Affiliation:
Bjerknes Centre for Climate Research, Allégt. 55, N-5007, Bergen, Norway
Reidar Løvlie
Affiliation:
Department of Earth Science, University of Bergen, Allégt. 41, N-5007 Bergen, Norway
Atle Nesje
Affiliation:
Department of Earth Science, University of Bergen, Allégt. 41, N-5007 Bergen, Norway Bjerknes Centre for Climate Research, Allégt. 55, N-5007, Bergen, Norway
*
*Corresponding author. Bjerknes Centre for Climate Research, Norway. Fax: +47 55 589803.E-mail address:[email protected] (Ø. Paasche).

Abstract

Numerous cirques of the Lofoten–Vesterålen archipelago in northern Norway have distinct moraine sequences that previously have been assigned to the Allerød-Younger Dryas (∼ 13,400 to 11,700 yr BP) interval, constraining the regional distribution of the equilibrium-line altitude (ELA) of cirque and valley glaciers. Here we present evidence from a once glacier-fed lake on southern Andøya that contests this view. Analyses of radiocarbon dated lacustrine sediments including rock magnetic parameters, grain size, organic matter, dry bulk density and visual interpretation suggest that no glacier was present in the low-lying cirque during the Younger Dryas-Allerød. The initiation of the glacial retreat commenced with the onset of the Bølling warming (∼ 14,700 yr BP) and was completed by the onset of Allerød Interstade (∼ 13,400 yr BP). The reconstructed glacier stages of the investigated cirque coincide with a cool and dry period from ∼ 17,500 to 14,700 yr BP and a somewhat larger Last Glacial Maximum (LGM) advance possibly occurring between ∼ 21,050 and 19,100 yr BP.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlmann, H.W. (1935). The Fourtheenth of July Glacier.. Geografiska Annaler 17, 167218.CrossRefGoogle Scholar
Alley, R.B. (2000). The Younger Dryas cold interval as viewed from central Greenland.. Quaternary Science Reviews 19, 213226.Google Scholar
Alm, T. (1993). Øvre Æråsvatn–Palynostratigraphy of a 22,000 to 10,000 BP lacustrine record on Andøya, northern Norway.. Boreas 22, 171188.Google Scholar
Andersen, B.G. (1968). Glacial Geology of Northern Nordland, North Norway.. Norwegian Geological Survey 320, 174.Google Scholar
Andrews, J.T. (1975). Glacial Systems–An Approach to Glaciers and Their Environments.. Duxberry Press, Massachusetts.199 pp.Google Scholar
Aune, B. (1993). Air temperature normal, 1961–1990.. The Norwegian Meteorological Institute. Report 2.Google Scholar
Bakke, J., Dahl, S.O., Paasche, Ø., Løvlie, R., Nesje, A.(2005a). Glacier fluctuations, equilibrium-line altitudes and palaeoclimate in Lyngen, northern Norway, during the Lateglacial and Holocene.. The Holocene 15, 518540.Google Scholar
Bakke, J., Lie, Ø., Nesje, A., Dahl, S.O., Paasche, Ø.(2005b). Utilizing physical sediment variability in glacier-fed lakes for continuous glacier reconstructions during the Holocene, northern Folgefonna, western Norway.. The Holocene 15, 161176.Google Scholar
Ballantyne, C.K. (1989). The Loch Lomond Advance on the Isle of Skye, Scotland: glacier reconstruction and palaeoclimatic implications.. Journal of Quaternary Science 4, 95108.CrossRefGoogle Scholar
Ballantyne, C.K. (1990). The Holocene glacial history of Lyngshalvøya, northern Norway: chronology and climatic implications.. Boreas 19, 93117.Google Scholar
Birks, H.H., Kiltgaard Kristensen, D.K., Dokken, T.M., Andersson, C.(2005). Explanatory comparisons of quantitative temperature estimates over the last deglaciation in Norway and the Norwegian Sea.. Drange, H., Dokken, T.M., Furevik, T., Gerdes, R., Berger, W. The Nordic Seas; An Integrated Perspective; Oceanography, Climatology, Biogeochemistry, and Modeling Geophysical Monograph vol. 158, AGU, Washington, DC.341355.Google Scholar
Bogen, J., Bønsnes, T.E.("nsnes, 2003). Erosion and sediment transport in High Arctic rivers, Svalbard.. Polar Research 22, 175189.CrossRefGoogle Scholar
Broecker, W.S., Peteet, D., Rind, D.(1985). Does the ocean–atmosphere system have more than one mode?.. Nature 315, 2125.CrossRefGoogle Scholar
Church, M., Gilbert, R.(1975). Proglacial fluvial and lacustrine environments.. Joupling, A.V., McDonald, B.C. Glaciofluvial and Glaciolacustrine Sedimentation vol. 23, SEPM Special Publication, 22100.Google Scholar
Church, M., Ryder, J.M.(1972). Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation.. Geological Society of America Bulletin 83, 30593072.CrossRefGoogle Scholar
Clark, D.H., Clark, M.M., Gillespie, A.R.(1994). Debris-covered glaciers in Sierra-Nevada, California, and their implications for snowline reconstructions.. Quaternary Research 41, 139153.Google Scholar
Cuffey, K., Conway, H., Gades, A.M., Hallet, B., Lorrain, R., Severinghaus, J.P., Steig, E.J., Vaughn, B., White, J.W.C.(2000). Entrainment at cold glacier beds.. Geology 28, 351354.2.0.CO;2>CrossRefGoogle Scholar
Dahl, S.O., Nesje, A.(1992). Paleoclimatic implications based on equilibrium-line altitude depressions of reconstructed Younger Dryas and Holocene cirque glaciers in inner Nordfjord, western Norway.. Palaeogeography, Palaeoclimatology, Palaeoecology 94, 8797.CrossRefGoogle Scholar
Dahl, S.O., Nesje, A.(1996). A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjøkulen, central southern Norway.. The Holocene 6, 381398.Google Scholar
Dahl, S.O., Nesje, A., Øvstedal, J.(1997). Cirque glaciers as morphological evidence for a thin Younger Dryas ice sheet in east-central Southern Norway.. Boreas 26, 161180.Google Scholar
Dean, W.E. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by rocks by loss on ignition: comparison with other methods.. Journal of Sedimentary Petrology 44, 242248.Google Scholar
Denton, G.H., Alley, R.B., Comer, G.C., Broecker, W.S.(2005). The role of seasonality in abrupt climate change.. Quaternary Science Reviews 24, 11591182.CrossRefGoogle Scholar
Fimreite, S., Vorren, K.-D., Vorren, T.(2002). Vegetation, climate and ice-front oscillations in the Tromsø area, northern Norway during the Allerød and Younger Dryas.. Boreas 30, 89100.Google Scholar
Fjalstad, A. (1997). Late Weichselian glacial maximum, glacial retreat, and postglacial sea level changes at northern and central Andøya, northern Norway..PhD thesis University of Troms", Google Scholar
Furbish, D.J., Andrews, J.T.(1984). The use of Hypsometry to indicate long-term stability and response of valley glaciers to changes in mass transfer.. Journal of Glaciology 30, 199211.CrossRefGoogle Scholar
J., Førland (1993). Precipitation Normal (1961–1990).. The Norwegian Meteorological Institute Report 39.Google Scholar
Gascard, J.C., Raisbeck, G., Sequeira, S., Yiou, F., Mork, K.A.(2004). The Norwegian Atlantic Current in the Lofoten basin inferred from hydrological and tracer data (129I) and its interaction with the Norwegian Coastal Current.. Geophysical Research Letters 31, L01308 10.1029/2003GL/018303.Google Scholar
Gurnell, A.M. (1987). Suspended sediment.. Gurnell, A.M., Clarke, M.J. Glacio-fluvial Sediment Transfer.. John Wiley and Sons Ltd., 305354.Google Scholar
Hallet, B., Hunter, L., Bogen, J.(1996). Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications.. Global and Planetary Change 12, 213235.Google Scholar
Hatling, J. (1967). Slamtransport og geomorfologi i Leirdølas nedslagsfelt (in Norwegian). Unpublished Cand. Scient. Thesis.. Department of Geography.University of Oslo, Norway.Google Scholar
Heegaard, E., Birks, H.J.B., Telford, R.J.(2005). Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression.. The Holocene 15, 612618.CrossRefGoogle Scholar
Hemming, S.R. (2004). Heinrich events: massive Late Pleistocene detritus layers of the North Atlantic and their global climatic imprint.. Reviews of Geophysics 42, RG1005 doi:10.1029/2003RG000128.CrossRefGoogle Scholar
Henningsen, T., and Tveten, E. (1998). Geologisk kart over Norge. Berggrunnskart Andøya, M 1:250 000..Norwegian Geological Survey.Google Scholar
Hjulström, F. ("m, 1939). )Transportation of detritus by moving water.. Trask, P.D. Recent Marine Sediments American Association of Petroleum Geologists, Tulsa.531.Google Scholar
Hodgkins, R., Cooper, R., Wadham, J., Tranter, M.(2003). Suspended sediment fluxes in a high-Arctic glacierised catchment: implications for fluvial storage.. Sedimentary Geology 162, 105117.Google Scholar
Hodson, A.J., Gurnell, A., Tranter, M., Bogen, J., Hagen, J.O., Clark, M.(1998). Suspended sediment yield and transfer processes in a small High-Arctic glacier basin, Svalbard.. Hydrological Processes 12, 7386.Google Scholar
Humlum, O. (1997). Younger Dryas glaciation in Söderåsen, south Sweden: an analysis of meteorological and topographical controls.. Geografiska Annaler 79, 115.Google Scholar
Humlum, O. (2002). Modelling late 20th-century precipitation in Nordenskiöld Land, Svalbard, by geomorphic means.. Norsk Geografisk Tidsskrift 56, 96103.Google Scholar
Ivy-Ochs, S., Kerschner, H., Kubik, P.W., Schluchter, C.(2006). Glacier response in the European Alps to Heinrich Event 1 cooling: the Gschnitz stadial.. Journal of Quaternary Science 21, 115130.CrossRefGoogle Scholar
Jansen, E. (1987). Rapid changes in the inflow of Atlantic water into the Norwegian Sea at the end of the last glaciation.. Berger, W.H., Labeyrie, L.D. Abrupt Climatic Change D. Reidel, Dordrecth.299310.Google Scholar
Jansson, P., Rosquist, G., Schneider, T.(2005). Glacier fluctuations, suspended sediment flux and glacio-lacustrine sediments.. Geografiska Annaler 87, 3750.Google Scholar
Karlén, W. ("n, 1976). )Lacustrine sediments and tree-limit variations as indicators of Holocene climatic fluctuations in Lapland, northern Sweden.. Geografiska Annaler 58A, 134.Google Scholar
Karlén, W. ("n, 1981). )Lacustrine sediment studies.. Geografiska Annaler 63A, 273281.Google Scholar
Koc, N., Jansen, E., Haflidason, H.(1993). Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian Seas through the last 14-ka based on diatoms.. Quaternary Science Reviews 12, 115140.Google Scholar
Kovanen, D.J., Slaymaker, O.(2005). Fluctuations of the Deming Glacier and theoretical equilibrium line altitudes during the Late Pleistocene and Early Holocene on Mount Baker, Washington, USA.. Boreas 34, 157175.Google Scholar
Kuhle, M. (1988). Topography as the fundamental element of glacial systems.. GeoJournal 17, 545568.Google Scholar
Leemann, A., Niessen, F.(1994). Varv formation and the climatic record in an Alpine proglacial lake: calibrating annually laminated sediments against hydrological and meteorological data.. The Holcoene 4, 18.Google Scholar
Leonard, E. (1985). Glaciological and climatic controls on lake sedimentation, Canadian Rocky Mountains.. Zeitschrift für Gletscherkunde und Glazialgeologie 21, 3542.Google Scholar
Leonard, E. (1986). Use of lacustrine sedimentary sequences as indicators of holocene glacial history, Banff National Park, Alberta, Canada.. Quaternary Research 26, 218231.Google Scholar
Lie, Ø., Paasche, Ø.(2006). How extreme was northern hemisphere seasonality during the Younger Dryas?.. Quaternary Science Reviews 25, 404407.Google Scholar
Lie, Ø., Dahl, S.O., Nesje, A.(2003). A theoretical approach to glacier equilibrium-line altitudes using meteorological data and glacier mass-balance records from southern Norway.. The Holocene 13, 365372.Google Scholar
Lie, Ø., Dahl, S.O., Nesje, A., Matthews, J.A., Sandvold, S.(2004). Holocene fluctuations of a polythermal glacier in high-alpine eastern joutunheimen, central-southern Norway.. Quaternary Science Reviews 23, 19251945.Google Scholar
Liestøl, O. ("l, 1967). )Storbreen glacier in Joutunheimen, Norway.. Norsk Polarinstitutt, Skrifter 141, 163.Google Scholar
Mangerud, J. (2004). Ice sheet limits on Norway and the Norwegian continental shelf.. Ehlers, J., Gibbard, P. Quaternary Glaciations–Extent and Chronology vol. 1, Europe Elsevier, Amsterdam.271294.Google Scholar
Mangerud, J., Landvik, J.Y.(2007). Younger Dryas cirque glaciers in western Spitsbergen: smaller than during the Little Ice Age.. Boreas 36, 278285.Google Scholar
Matthews, J.A., Karlén, W.("n, 1992). Asynchronous neoglaciation and Holocene climatic change reconstructed from Norwegian glaciolacustrine sedimentary sequences.. Geology 20, 991994.2.3.CO;2>CrossRefGoogle Scholar
Matthews, J.A., Dahl, S.O., Nesje, A., Berrisford, M.S., Andersson, C.(2000). Holocene glacier variations in central Jotunheimen, southern Norway based on distal glaciolacustrine sediment cores.. Quaternary Science Reviews 19, 16251647.CrossRefGoogle Scholar
Mäusbacher, R., Borg, K.v.d., Daut, G., Kroemer, E., Müller, J., Wallner, J.("usbacher et al., 2002). Late Pleistocene and Holocene environmental changes in NW Spitsbergen–Evidence from lake sediments.. Zeitschrift für Geomorphologie 46, 417439.CrossRefGoogle Scholar
McManus, J., Francois, R., Gherardi, J.M., Keigwin, L.D., Brown-Leger, S.(2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes.. Nature 428, 834837.Google Scholar
Nesje, A. (1992). A piston corer for lacustrine and marine sediments.. Arctic and Alpine Research 24, 257259.Google Scholar
Nesje, A., Kvamme, M., Rye, N., Løvlie, R.(1991). Holocene glacial and climatic history of the Jostedalsbreen region, western Norway: evidence from lake sediments and terrestrial deposits.. Quaternary Science Reviews 10, 87114.Google Scholar
Østrem, G. ("strem, 1975). )Sediment transport in glacial meltwater streams.. Joupling, A.V., McDonald, B.C. Glaciofluvial and Glaciolacustrine Sedimentation vol. 23, SEPM Special Publication, 101122.Google Scholar
Østrem, G., Olsen, H.C.("strem and Olsen, 1987). Sedimentation in glacier lake.. Geografiska Annaler 69A, 123138.Google Scholar
Paasche, Ø., Dahl, S.O., Løvlie, R., Bakke, J., Nesje, A.(2007). Rockglacier activity during the Last Glacial–Interglacial transition and Holocene spring snowmelting.. Quaternary Science Reviews 26, 793807.Google Scholar
Paterson, W.S.B. (1994). The Physics of Glaciers.. 3rd ed.Pergamon, Oxford.Google Scholar
Porter, S.C. (1970). Quaternary glacial record in Swat Kohistan, West Pakistan.. Geological Society of American Bulletin 7, 14211446.Google Scholar
Porter, S.C. (1975). Equilibrium-line altitudes of late quaternary glaciers in the Southern Alps, New Zealand.. Quaternary Research 5, 2747.Google Scholar
Rasmussen, A. (1984). Late Weichselian moraine chronology of the Vesterålen islands, North Norway.. Norsk Geologisk Tidsskrift 64, 193219.Google Scholar
Rasmussen, L.A., Conway, H.(2005). Influence of upper-air conditions on glaciers in Scandinavia.. Annals of Glaciology 42, 402408.Google Scholar
Renssen, H., Isarin, R.F.B., Jacob, D., Podzun, R., Vandenberghe, J.(2001). Simulation of the Younger Dryas climate in Europe using a regional climate model nested in an AGCM: preliminary results.. Global and Planetary Change 30, 4157.Google Scholar
Seager, R., Battisti, D.S.(2007). Challenges to our understanding of the general circulation: abrupt climate change.. Schneider, T., Sobel, A. The General Circulation of the Atmosphere Princeton University Press, Princeton and Oxford.400.Google Scholar
Sissons, J.B. (1979). Palaeoclimatic inferences from former glaciers in Scotland and the Lake District.. Nature 278, 518521.Google Scholar
Stein, R. (1985). Rapid grain-size analysis of clay and silt fraction by SediGraph 5000D: comparison with Coulter Counter and Atterberg methods.. Journal of Sedimentary Petrology 55, 590593.CrossRefGoogle Scholar
Steiner, D., Walter, A., Zumbuhl, H.J.(2005). The application of a non-linear back-propagation neural network to study the mass balance of Grosse Aletschgletscher, Switzerland.. Journal of Glaciology 51, 313323.Google Scholar
Stober, J.C., Thompson, R.(1979). Magnetic remanence acquisition in Finnish lake sediments.. Geophysical Journal of the Royal Astronomical Society 57, 727739.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., v.d. Plicht, J., Spurk, M.(1998). IntCal 98 Radiocarbon Age Calibration, 24000-0 cal BP.. Radiocarbon 40, 10411083.CrossRefGoogle Scholar
Sundborg, A. (1956). The River Klarälven: a study of fluvial processes.. Geografiska Annaler 38, 127316.Google Scholar
Sundborg, A. (1967). Some aspects on fluvial sediments and fluvial morphology. I. General views and graphic methods.. Geografiska Annaler 49A, 333343.Google Scholar
Sutherland, D.G. (1984). Modern glacier characteristics as a basis for inferring former climates with particular reference to the Lomond Stadial.. Quaternary Science Reviews 3, 291309.CrossRefGoogle Scholar
Svendsen, J.I., Landvik, J.Y., Mangerud, J., Miller, G.H.(1987). Postglacial marine and lacustrine sediments in Lake Linnévatnet, Svalbard.. Polar Research 5, 281283.Google Scholar
Vorren, T.O., Vorren, K.-D., Alm, T., Gulliksen, S., Løvlie, R.(1988). The last deglaciation (20.000 to 11.000 BP.) on Andøya, northern Norway.. Boreas 17, 4177.Google Scholar
Weirich, F.H. (1985). Sediment budget for a high energy glacial lake.. Geografiska Annaler 67A, 8399.CrossRefGoogle Scholar
Woo, M.-K. (1986). Permafrost hydrology in North America.. Atmosphere–Ocean 24, 201234.Google Scholar
Zemp, M., Hoelzle, M., Haeberli, W.(2007). Distributed modelling of the regional climatic equilibrium line altitude of glaciers in the European Alps.. Global and Planetary Change 56, 83100.Google Scholar