Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T16:59:09.091Z Has data issue: false hasContentIssue false

Chronology of Taylor Glacier Advances in Arena Valley, Antarctica, Using in Situ Cosmogenic 3He and 10Be

Published online by Cambridge University Press:  20 January 2017

Edward J. Brook
Affiliation:
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
Mark D. Kurz
Affiliation:
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
Robert P. Ackert Jr.
Affiliation:
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
George H. Denton
Affiliation:
Department of Geological Sciences and Institute for Quaternary Studies, University of Maine, Orono, Maine 04469
Erik T. Brown
Affiliation:
Centre de Spectrométrie Nucléare et de Spectrométrie de Masse, In2P3-CNRS, Bâtiment 108, 91405 Campus Orsay, France
Grant M. Raisbeck
Affiliation:
Centre de Spectrométrie Nucléare et de Spectrométrie de Masse, In2P3-CNRS, Bâtiment 108, 91405 Campus Orsay, France
Francoise Yiou
Affiliation:
Centre de Spectrométrie Nucléare et de Spectrométrie de Masse, In2P3-CNRS, Bâtiment 108, 91405 Campus Orsay, France

Abstract

In situ produced cosmogenic nuclides provide a new technique for constraining exposure ages of glacial deposits. In situ 3He and 10Be in quartz sandstone boulders from Arena Valley, southern Victoria Land, Antarctica, provide chronological constraints for a sequence of moraines ("Taylor II-IVb" moraines) related to expansions of Taylor Glacier and the East Antarctic Ice Sheet. Mean 3He ages are 113,000 ± 45,000 yr, 208,000 ± 67,000 yr, 335,000 ± 187,000 yr, and 1.2 ± 0.2 myr, for Taylor II,III,IVa, and IVb moraines, respectively (mean ± 1σ). Corresponding mean 10Be ages for Taylor II and IVb moraines are 117,000 ± 51,000 yr and 2.1 ± 0.1 myr. For the older deposits the 3He ages are probably lower limits due to diffusive loss. Although the exposure ages appear consistent with the few previous age estimates, particularly with an isotope stage 5 age for Taylor II, each moraine exhibits a broad age distribution. The distribution probably results from a variety of factors, which may include prior exposure to cosmic rays, 3He loss, erosion, postdepositional boulder movement, and radiogenic production of 3He. Nonetheless, the exposure ages provide direct chronological constraints for the moraine sequence, and suggest a maximum thickening of Taylor Glacier relative to the present ice surface of ∼500 m since the late Pliocene-early Pleistocene.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bockheim, J. G. (1982). Properties of a chronosequence of ultraxerous soils in the Trans-Antarctic Mountains. Geoderma 28, 239255.CrossRefGoogle Scholar
Brook, E. J., and Kurz, M. D. (1993). Using in situ 3He in Antarctic quartz sandstone boulders for surface-exposure chronology. Quaternary Research 39, 110.CrossRefGoogle Scholar
Brown, E. T. Brook, E. J. Raisbeck, G. M. Yiou, F., and Kurz, M. D. (1992). Effective attenuation lengths of cosmic rays producing 10Be and 26Al in quartz: Implications for exposure dating. Geophysical Research Letters 19(4), 367372.CrossRefGoogle Scholar
Brown, E. Edmond, J. M. Raisbeck, G. M. Yiou, F. Kurz, M., and Brook, E. J. (1991). Examination of surface exposure ages of Antarctic moraines using in situ produced 10-Be and 26-At. Geochimica et Cosmochimica Acta 55(8), 22692284.Google Scholar
Cerling, T. E. (1990). Dating geomorphological surfaces using cos-mogenic 3-He. Quaternary Research 33, 148156.Google Scholar
Denton, G. H. Bockheim, J. G. Wilson, S. C, and Stuiver, M. (1989). Late Wisconsin and early Holocene glacial history, inner Ross Em-bayment, Antarctica. Quaternary Research 31, 151182.Google Scholar
Hendy, C. H. Healy, T. H. Rayner, E. M. Shaw, J., and Wilson, A. T. (1979). Late Pleistocene glacial chronology of the Taylor Valley, Antarctica, and the global climate. Quaternary Research 11, 172184.CrossRefGoogle Scholar
Kurz, M. D. (1986). In situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochimica et Cosmochimica Acta 50, 28552862.CrossRefGoogle Scholar
Kurz, M. D. Colodner, D. Trull, T. W. Moore, R. B., and O’Brien, K. (1990). Cosmic ray exposure dating with in situ produced cos-mogenic 3He: Results from young lava flows. Earth and Planetary Science Letters 97, 177189.Google Scholar
Lal, D. (1991). Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424439.Google Scholar
Marchant, D. (1990) “Surficial Geology and Stratigraphy in Arena Valley, Antarctica: Implications for Antarctic Tertiary Glacial History.” Unpublished MS thesis, University of Maine at Orono.Google Scholar
Matz, D. M. Pinet, P. R., and Hayes, M. O. (1972). Stratigraphy and Petrology of the Beacon Supergroup, Southern Victoria Land. In “Antarctic Geology and Geophysics” (Adie, R. J., Ed.), pp. 353358. Universitetsforlaget, Oslo.Google Scholar
McElroy, C. T., and Rose, G. (1987). “Geology of the Beacon Heights Area: Southern Victoria Land, Antarctica.” New Zealand Geological Survey Miscellaneous Series Map 15. DS1R, Wellington, New Zealand.Google Scholar
McKelvey, B. C Webb, P. N. Harwood, D., and Mabin, M. C. G. (1990). The Dominion Range Sirius Group: A record of the late Pliocene-early Pleistocene Beardmore Glacier. In “Geological Evolution of Antarctica” (Thomson, M. R. A. Crame, J. A., and Thomson, J. W., Eds.), pp. 675682. Cambridge Univ. Press, New York.Google Scholar
Nishiizumi, K. Winterer, E. L. Kohl, C P. Klein, J. Middleton, R. Lal, D., and Arnold, J. R. (1989). Cosmic ray production rates of 10-Be and 26-Al in quartz from glacially polished rocks. Journal of Geophysical Research 94(B12), 1790717915.Google Scholar
Nishiizumi, K. Kohl, C. P. Arnold, J. R. Klein, J. Fink, D., and Middleton, R. (1991). Cosmic ray produced 10Be and 26A1 in Antarctic rocks: Exposure and erosion rates. Earth and Planetary Science Letters 104, 440454.Google Scholar
Philipps, F. M. Zreda, M. G. Smith, S. S. Elmore, D. Kubik, P. W., and Sharma, P. (1990). Cosmogenic chlorine-36 chronology for glacial deposits at bloody canyon, eastern Sierra Nevada. Science 248, 15291532.CrossRefGoogle Scholar
Robinson, P. H. (1984). Ice dynamics and thermal regime of Taylor Glacier, south Victoria Land, Antarctica. Journal of Glaciology 30(105), 153160.CrossRefGoogle Scholar
Shoemaker, D. P. Garland, C. W., and Nibler, J. W. (1989). “Experiments in Physical Chemistry.” McGraw-Hill, New York.Google Scholar
Staudacher, T., and Allègre, C. J. (1991). Cosmogenic neon in ultrama-fic nodules from Asia and in quartzite from Antarctica. Earth and Planetary Science Letters 106, 87102.Google Scholar
Wilch, T. I. Lux, D. R. Mcintosh, W. C, and Denton, G. H. (1990). Plio-Pleistocene uplift of the McMurdo Dry Valley Sector of the Transantarctic Mountains. Antarctic Journal of the United States 24(5), 3033.Google Scholar
Zreda, M. K. Phillips, F. M. Elmore, D. Kubik, P. W. Sharma, P., and Dorn, R. I. (1991). Cosmogenic chlorine-36 production rates in terrestrial rocks. Earth and Planetary Science Letters 105, 94109.Google Scholar