Hostname: page-component-7b9c58cd5d-bslzr Total loading time: 0.001 Render date: 2025-03-13T14:07:26.393Z Has data issue: false hasContentIssue false

Chironomid-inferred postglacial temperature reconstruction from Gold Lake, Oregon, USA

Published online by Cambridge University Press:  13 March 2025

Jamila Baig*
Affiliation:
Department of Environmental Studies, University of Oregon, Eugene, OR, USA Department of Geography, University of Oregon, Eugene, OR, USA
Daniel G. Gavin
Affiliation:
Department of Geography, University of Oregon, Eugene, OR, USA
Ian Walker
Affiliation:
Biology, Earth, Environment and Geographic Sciences, University of British Columbia-Okangan, Kelowna, BC, Canada
David Porinchu
Affiliation:
Department of Geography, University of Georgia, Athens, Georgia
*
Corresponding author: Jamila Baig; Email: [email protected]

Abstract

A paleotemperature reconstruction inferred from subfossil chironomid (non-biting midge) assemblages in a 13-meter, 14,500-yr lake sediment record from a montane forest in the Pacific Northwest is compared to existing quantitative temperature reconstructions from the Pacific Northwest. With updated temperatures, a regional training set was used to develop a midge-based mean July air temperature (MJAT) inference model (r2jack = 0.71, root mean square error of prediction = 1.09°C). The average inferred MJAT varied between 9.4°C and 13.2°C. During the late-glacial period, MJAT ranged between 9.4°C and 10.8°C, and the lowest MJAT (9.4°C) is inferred at ca. 12.7 ka during the Younger Dryas. The transition into the Early Holocene was marked by an increase from 11°C at 11 ka to 12°C at 9.2 ka. Following deposition of the Mazama tephra, chironomid concentration decreased rapidly, and MJAT rose to 12.3°C at ca. 7.6 ka. This change in chironomid assemblage may be due to the direct effects of the tephra on the surface energy balance. The reconstructed temperature did not track decreasing Holocene summer insolation but instead revealed Late Holocene warming, which is similar to a chironomid reconstruction in the eastern Sierra Nevada and a sea-surface temperature reconstruction from northern California.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alizadeh, M.R., Abatzoglou, J.T., Luce, C.H., Adamowski, J.F., Farid, A., Sadegh, M., 2021. Warming enabled upslope advance in western US forest fires. Proceedings of the National Academy of Sciences of the United States of America 118, e2009717118. https://doi.org/10.1073/pnas.2009717118CrossRefGoogle ScholarPubMed
Armitage, P.D., Pinder, L.C., Cranston, P.S. (Eds.), 2012. The Chironomidae: Biology and Ecology of Non-Biting Midges. Springer Science and Business Media, Dordrecht, Netherlands.Google Scholar
Baig, J., Gavin, D.G., 2023. Postglacial vegetation and fire history with a high-resolution analysis of tephra impacts, high Cascade Range, Oregon, USA. Quaternary Science Reviews 303, 107970. https://doi.org/10.1016/j.quascirev.2023.107970CrossRefGoogle Scholar
Barron, J.A., Heusser, L., Herbert, T., Lyle, M., 2003. High-resolution climatic evolution of coastal northern California during the past 16,000 years. Paleoceanography 18, PA000768. https://doi.org/10.1029/2002PA000768CrossRefGoogle Scholar
Bartlein, P.J., Anderson, K.H., Anderson, P.M., Edwards, M.E., Mock, C.J., Thompson, R.S., Webb, R.S., Webb, T., III, Whitlock, C., 1998. Paleoclimate simulations for North America over the past 21,000 years: features of the simulated climate and comparisons with paleoenvironmental data. Quaternary Science Reviews 17, 549585. https://doi.org/10.1016/S0277-3791(98)00012-2CrossRefGoogle Scholar
Battarbee, R. W., Thompson, R., Catalan, J., Grytnes, J.A., Birks, H.J.B., 2002. Climate variability and ecosystem dynamics of remote alpine arctic lakes: the MOLAR project. Journal of Paleolimnology 28, 16. https://doi.org/10.1023/a:1020342316326CrossRefGoogle Scholar
Benson, L., Kashgarian, M., Rye, R., Lund, S., Paillet, F., Smoot, J., Kester, C., Mensing, S., Meko, D., Lindström, S., 2002. Holocene multidecadal and multicentennial droughts affecting Northern California and Nevada. Quaternary Science Reviews 21, 659682. https://doi.org/10.1016/s0277-3791(01)00048-8CrossRefGoogle Scholar
Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.CrossRefGoogle Scholar
Birks, H.J.B., Birks, H.J.B., 1998. D.G. Frey and E.S. Deevey review 1: numerical tools in palaeolimnology—progress, potentialities, and problems. Journal of Paleolimnology 20, 307332.CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.CrossRefGoogle Scholar
Brodersen, K.P., Odgaard, B.V., Vestergaard, O., Anderson, N.J., 2001. Chironomid stratigraphy in the shallow and eutrophic Lake Søbygaard, Denmark: chironomid–macrophyte co-occurrence. Freshwater Biology 46, 253267. https://doi.org/10.1046/J.1365-2427.2001.00652.XCrossRefGoogle Scholar
Brodin, Y.W., 1986. The postglacial history of Lake Flarken, southern Sweden, interpreted from subfossil insect remains. Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie 71, 371432. https://doi.org/10.1002/iroh.19860710313CrossRefGoogle Scholar
Brooks, S.J., Birks, H.J.B., 2001. Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quaternary Science Reviews 20, 17231741. https://doi.org/10.1016/S0277-3791(01)00038-5CrossRefGoogle Scholar
Brooks, S.J., Langdon, P.G., Heiri, O., 2007. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. Technical Guide no. 10, Quaternary Research Association, London.Google Scholar
Brooks, S.J., Mayle, F.E., Lowe, J.J., 1997. Chironomid-based Lateglacial climatic reconstruction for southeast Scotland. Journal of Quaternary Science 12, 161167.3.0.CO;2-T>CrossRefGoogle Scholar
Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K., Ellison, A.M., 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84, 4567. https://doi.org/10.1890/13-0133.1CrossRefGoogle Scholar
Chase, M., Bleskie, C., Walker, I.R., Gavin, D.G. Hu, F.S., 2008. Midge-inferred Holocene summer temperatures in southeastern British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 257, 244259. https://doi.org/10.1016/j.palaeo.2007.10.020CrossRefGoogle Scholar
Cohen, K.M., Finney, S.C., Gibbard, P.L., Fan, J.X., 2013. The ICS International Chronostratigraphic Chart. Episodes Journal of International Geoscience 36, 199204.Google Scholar
Cranston, P.S., Oliver, D.R., Sæther, O.A., 1983. The larvae of the Orthocladiinae (Diptera: Chironomidae) of the Holarctic region: keys and diagnoses. In: Wiederholm, T. (Ed.), Chironomidae of the Holarctic Region. Keys and Diagnoses. Part 1–Larvae. Entomologica Scandinavica Supplement 19, 457 pp.Google Scholar
Cwynar, L.C. Levesque, A.J., 1995. Chironomid evidence for late-glacial climatic reversals in Maine. Quaternary Research 43, 405413. https://doi.org/10.1006/qres.1995.1046CrossRefGoogle Scholar
Dolman, A.M., Laepple, T., 2018. Sedproxy: a forward model for sediment-archived climate proxies. Climate of the Past 14, 18511868.CrossRefGoogle Scholar
Donders, T.H., Wagner-Cremer, F., Visscher, H., 2008. Integration of proxy data and model scenarios for the mid-Holocene onset of modern ENSO variability. Quaternary Science Reviews, 27, 571579. https://doi.org/10.1016/j.quascirev.2007.11.010CrossRefGoogle Scholar
Egan, J., Fletcher, W.J., Allott, T.E.H., Lane, C.S., Blackford, J.J., Clark, D.H., 2016. The impact and significance of tephra deposition on a Holocene forest environment in the North Cascades, Washington, USA. Quaternary Science Reviews 137, 135155. https://doi.org/10.1016/j.quascirev.2016.02.013CrossRefGoogle Scholar
Eggermont, H., Heiri, O., 2012. The chironomid–temperature relationship: expression in nature and palaeoenvironmental implications. Biological Reviews 87, 430456. https://doi.org/10.1111/j.1469-185X.2011.00206.xCrossRefGoogle ScholarPubMed
Engels, S., Medeiros, A.S., Axford, Y., Brooks, S.J., Heiri, O., Luoto, T.P., Nazarova, L., Porinchu, D.F., Quinlan, R., Self, A.E., 2020. Temperature change as a driver of spatial patterns and long-term trends in chironomid (Insecta: Diptera) diversity. Global Change Biology 26, 11551169. https://doi.org/10.1111/gcb.14862CrossRefGoogle ScholarPubMed
Ersek, V., Clark, P.U., Mix, A.C., Cheng, H., Edwards, R.L., 2012. Holocene winter climate variability in mid-latitude western North America. Nature Communications 3, 1219. https://doi.org/10.1038/ncomms2222CrossRefGoogle ScholarPubMed
Franklin, J., Dyrness, C., 1988. Natural Vegetation of Oregon and Washington. Oregon State University Press, Corvallis, Oregon. https://www.fsl.orst.edu/rna/Documents/publications/Natural%20vegetation%20of%20Oregon%20and%20Washington%201988.pdfGoogle Scholar
Gavin, D.G., Brubaker, L.B., Greenwald, D.N., 2013. Postglacial climate and fire-mediated vegetation change on the western Olympic Peninsula, Washington (USA). Ecological Monographs 83, 471489. https://doi.org/10.1890/12-1742.1CrossRefGoogle Scholar
Gouw-Bouman, M.T.I.J., Van Asch, N., Engels, S., Hoek, W.Z., 2019. Late Holocene ecological shifts and chironomid-inferred summer temperature changes reconstructed from Lake Uddelermeer, the Netherlands. Palaeogeography, Palaeoclimatology, Palaeoecology 535, 109366. https://doi.org/10.1016/j.palaeo.2019.109366CrossRefGoogle Scholar
Grigg, L.D., Whitlock, C., 1998. Late glacial vegetation and climate change in western Oregon. Quaternary Research 49, 287298. https://doi.org/10.1006/qres.1998.1966CrossRefGoogle Scholar
Harris, J., Van Couvering, J., 1995. Mock aridity and the paleoecology of volcanically influenced ecosystems. Geology 23, 593596.2.3.CO;2>CrossRefGoogle Scholar
Haskett, D.R., Porinchu, D.F., 2014. A quantitative midge-based reconstruction of mean July air temperature from a high-elevation site in central Colorado, USA, for MIS 6 and 5. Quaternary Research 82, 580591. https://doi.org/10.1016/j.yqres.2014.05.002CrossRefGoogle Scholar
Heiri, O., Lotter, A.F., 2001. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. Journal of Paleolimnology 26, 343350. https://doi.org/10.1023/A:1017568913302CrossRefGoogle Scholar
Henrikson, L., Olofsson, J.B., Oscarson, H.G., 1982. The impact of acidification on Chironomidae (Diptera) as indicated by subfossil stratification. Hydrobiologia 86, 223229. https://doi.org/10.1007/BF00006140CrossRefGoogle Scholar
Heusser, C.J., Heusser, L.E., Peteet, D.M., 1985. Late-Quaternary climatic change on the American North Pacific Coast. Nature 315, 485487.CrossRefGoogle Scholar
Hill, M.O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427432. https://doi.org/10.2307/1934352CrossRefGoogle Scholar
Hsieh, T.C., Ma, K.H., Chao, A., 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7, 14511456. https://doi.org/10.1111/2041-210X.12613CrossRefGoogle Scholar
Johnson, D.M., Petersen, R.R., Lycan, D.R., Sweet, J.W., Neuhaus, M.E., Schaedel, A.L., 1985. Atlas of Oregon Lakes. Oregon State University Press, Corvallis, Oregon.Google Scholar
Juggins, S., 2003–2007. User Guide C2 Version 1.5: Software for Ecological and Palaeoecological Data Analysis and Visualisation. University of Newcastle, Newcastle upon Tyne, UK, 73 pp. https://www.staff.ncl.ac.uk/stephen.juggins/software/code/C2.pdfGoogle Scholar
Lacourse, T., 2005. Late Quaternary dynamics of forest vegetation on northern Vancouver Island, British Columbia, Canada. Quaternary Science Review 24, 105121. https://doi.org/10.1016/j.quascirev.2004.05.008CrossRefGoogle Scholar
Langdon, P.G., Ruiz, Z., Brodersen, K.P., Foster, I.D.L., 2006. Assessing lake eutrophication using chironomids: understanding the nature of community response in different lake types. Freshwater Biology 51, 562577. https://doi.org/10.1111/J.1365-2427.2005.01500.XCrossRefGoogle Scholar
Larocque, I., Hall, R.I., 2003. Chironomids as quantitative indicators of mean July air temperature: validation by comparison with century-long meteorological records from northern Sweden. Journal of Paleolimnology 29, 475493.CrossRefGoogle Scholar
Larocque, I., Hall, R.I., Grahn, E., 2001. Chironomids as indicators of climate change: a 100‐lake training set from a subarctic region of northern Sweden (Lapland). Journal of Paleolimnology 26, 307322.CrossRefGoogle Scholar
Lemmen, J., Lacourse, T., 2018. Fossil chironomid assemblages and inferred summer temperatures for the past 14,000 years from a low-elevation lake in Pacific Canada. Journal of Paleolimnology 59, 427442. https://doi.org/10.1007/s10933-017-9998-3CrossRefGoogle Scholar
Livingstone, D.M., Lotter, A.F., 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palaeolimnological implications. Journal of Paleolimnology 19, 181198. https://doi.org/10.1023/A:1007904817619CrossRefGoogle Scholar
Lotter Eawag, A.F., Eicher, U., Siegenthaler, U., Birks, H.J.B., 1992. Late‐glacial climatic oscillations as recorded in Swiss lake sediments. Journal of Quaternary Science 7, 187204. https://doi.org/10.1002/JQS.3390070302CrossRefGoogle Scholar
MacDonald, G.M., Moser, K.A., Bloom, A.M., Porinchu, D.F., Potito, A.P., Wolfe, B.B., Edwards, T.W.D., Petel, A., Orme, A.R., Orme, A.J., 2008. Evidence of temperature depression and hydrological variations in the eastern Sierra Nevada during the Younger Dryas Stade. Quaternary Research 70, 131140. https://doi.org/10.1016/J.YQRES.2008.04.005CrossRefGoogle Scholar
Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 12561260.CrossRefGoogle ScholarPubMed
Marcott, S.A., Shakun, J.D., Clark, P.U., Mix, A.C., 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 11981201. https://doi.org/10.1126/science.1228026CrossRefGoogle ScholarPubMed
Mathewes, R.W., 1993. Evidence for Younger Dryas-age cooling on the North Pacific coast of America. Quaternary Science Review 12, 321331. https://doi.org/10.1016/0277-3791(93)90040-sCrossRefGoogle Scholar
Mathewes, R.W., Heusser, L.E., 1981. A 12 000 year palynological record of temperature and precipitation trends in southwestern British Columbia (Marion Lake). Canadian Journal of Botany 59, 707710. https://doi.org/10.1139/b81-100CrossRefGoogle Scholar
Mayfield, R.J., Langdon, P.G., Doncaster, C.P., Dearing, J.A., Wang, R., Velle, G., Davies, K.L., Brooks, S.J., 2021. Late Quaternary chironomid community structure shaped by rate and magnitude of climate change. Journal of Quaternary Science 36, 360376.CrossRefGoogle Scholar
Medeiros, A.S., Chipman, M.L., Francis, D.R., Hamerlík, L., Langdon, P., Puleo, P.J.K., Schellinger, G., et al., 2022. A continental-scale chironomid training set for reconstructing Arctic temperatures. Quaternary Science Reviews 294, 107728. https://doi.org/10.1016/j.quascirev.2022.107728CrossRefGoogle Scholar
Moberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, M.H., Karlén, W., Lauritzen, S.-E., 2005. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613617. https://doi.org/10.1038/nature03265CrossRefGoogle ScholarPubMed
Nelson, D.B., Abbott, M.B., Steinman, B., Polissar, P.J., Stansell, N.D., Ortiz, J.D., Rosenmeier, M.F., Finney, B.P., Riedel, J., 2011. Drought variability in the Pacific Northwest from a 6,000-yr lake sediment record. Proceedings of the National Academy of Sciences of the United States of America, 108, 38703875. https://doi.org/10.1073/pnas.1009194108CrossRefGoogle ScholarPubMed
Oksanen, J., 2008. Vegan: An Introduction To Ordination. Posted by the author, 12 pp. https://cran.r-project.org/web/packages/vegan/vignettes/intro-vegan.pdfGoogle Scholar
Olander, H., Korhola, A., Blom, T., 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. Journal of Paleolimnology 18, 4559. https://doi.org/10.1023/A:1007906609155CrossRefGoogle Scholar
PAGES 2k Consortium, 2013. Continental-scale temperature variability during the past two millennia. Nature Geoscience 6, 339346. https://doi.org/10.1038/ngeo1797CrossRefGoogle Scholar
Palmer, S., Walker, I., Heinrichs, M., Scudder, G., 2002. Postglacial midge community change and Holocene palaeotemperature reconstructions near treeline, southern British Columbia (Canada). Journal of Paleolimnology 28, 469490. https://doi.org/10.1023/A:1021644122727CrossRefGoogle Scholar
Porinchu, D.F., MacDonald, G.M., 2003. The use and application of freshwater midges (Chironomidae: Insecta: Diptera) in geographical research. Progress in Physical Geography 27, 378422. https://doi.org/10.1191/030913303767888491CrossRefGoogle Scholar
Porinchu, D.F., MacDonald, G.M., Bloom, A.M., Moser, K.A., 2003. Late Pleistocene and Early Holocene climate and limnological changes in the Sierra Nevada, California, USA inferred from midges (Insecta: Diptera: Chironomidae). Palaeogeography, Palaeoclimatology, Palaeoecology 198, 403422. https://doi.org/10.1016/S0031-0182(03)00481-4CrossRefGoogle Scholar
Porinchu, D.F., Potito, A.P., MacDonald, G.M., Bloom, A.M., 2007. Subfossil chironomids as indicators of recent climate change in Sierra Nevada, California, lakes. Arctic, Antarctic, and Alpine Research 39, 286296.CrossRefGoogle Scholar
Porinchu, D.F., Reinemann, S., Mark, B.G., Box, J.E., Rolland, N., 2010. Application of a midge-based inference model for air temperature reveals evidence of late-20th century warming in sub-alpine lakes in the central Great Basin, United States. Quaternary International 215, 1526. https://doi.org/10.1016/j.quaint.2009.07.021CrossRefGoogle Scholar
Potito, A.P., Porinchu, D.F., MacDonald, G.M., Moser, K.A., 2006. A late Quaternary chironomid-inferred temperature record from the Sierra Nevada, California, with connections to northeast Pacific sea surface temperatures. Quaternary Research 66, 356363. https://doi.org/10.1016/j.yqres.2006.05.005CrossRefGoogle Scholar
Praetorius, S.K., Mix, A.C., Walczak, M.H., Wolhowe, M.D., Addison, J.A., Prahl, F.G., 2015. North Pacific deglacial hypoxic events linked to abrupt ocean warming. Nature 527, 362366. https://doi.org/10.1038/nature15753CrossRefGoogle ScholarPubMed
Prentice, I.C., 1980. Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Review of Palaeobotany and Palynology 31, 71104.CrossRefGoogle Scholar
Quinlan, R., Smol, J.P., 2001. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. Journal of Paleolimnology 26, 327342.CrossRefGoogle Scholar
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., et al., 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 62, 725757. https://doi.org/10.1017/RDC.2020.41CrossRefGoogle Scholar
Reinemann, S.A., Porinchu, D.F., Bloom, A.M., Mark, B.G., and Box, J.E., 2009. A multi-proxy paleolimnological reconstruction of Holocene climate conditions in the Great Basin, United States. Quaternary Research 72, 347358.CrossRefGoogle Scholar
Reinemann, S.A., Porinchu, D.F., MacDonald, G.M., Mark, B.G., and DeGrand, J.Q., 2014a. A 2000-yr reconstruction of air temperature in the Great Basin of the United States with specific reference to the Medieval Climatic Anomaly. Quaternary Research 82, 309317. https://doi.org/10.1016/j.yqres.2014.06.002CrossRefGoogle Scholar
Reinemann, S.A., Porinchu, D.F., and Mark, B.G., 2014b. Regional climate change evidenced by recent shifts in chironomid community composition in subalpine and alpine lakes in the Great Basin of the United States. Arctic, Antarctic, and Alpine Research 46, 600615. https://doi.org/10.1657/1938-4246-46.3.600CrossRefGoogle Scholar
Schindler, D.W., Beaty, K.G., Fee, E.J., Cruikshank, D.R., DeBruyn, E.R., Findlay, D.L., Linsey, G.A., Shearer, J.A., Stainton, M.P., and Turner, M.A., 1990. Effects of climatic warming on lakes of the central boreal forest. Science 250, 967971.CrossRefGoogle ScholarPubMed
Schnurrenberger, D., Russell, J., Kelts, K., 2003. Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology 29, 141154. https://doi.org/10.1023/A:1023270324800CrossRefGoogle Scholar
Sea, D.S., Whitlock, C., 1995. Postglacial vegetation and climate of the Cascade Range, central Oregon. Quaternary Research 43, 370381.CrossRefGoogle Scholar
Smith, M.J., Pellatt, M.G., Walker, I.R., Mathewes, R.W., 1998. Postglacial changes in chironomid communities and inferred climate near treeline at Mount Stoyoma, Cascade Mountains, southwestern British Columbia, Canada. Journal of Paleolimnology 20, 277293. https://doi.org/10.1023/A:1007904917419CrossRefGoogle Scholar
Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), 2001a. Tracking Environmental Change Using Lake Sediments. Springer, Dordrecht, The Netherlands. https://doi.org/10.1007/0-306-47671-1Google Scholar
Smol, J.P., Birks, H.J.B., Last, W.M., 2001b. Zoological Indicators in Lake Sediments: An Introduction. In: Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environmental Change Using Lake Sediments. Springer, Dordrecht, The Netherlands, pp. 14. https://doi.org/10.1007/0-306-47671-1_1Google Scholar
Telford, R.J., and Birks, H.J.B., 2011. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quaternary Science Reviews 30, 12721278.CrossRefGoogle Scholar
Walker, I., 2001. Midges: Chironomidae and related Diptera. In: Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environmental Change Using Lake Sediments. Springer, Dordrecht, The Netherlands, pp. 4366. https://doi.org/10.1007/0-306-47671-1_3CrossRefGoogle Scholar
Walker, I., 2007. The WWW field guide to fossil midges. https://paleolab.ok.ubc.ca/wwwguide/index.html (1 March 2022)Google Scholar
Walker, I., Levesque, A.J., Cwynar, L.C., Lotter, A.F., 1997. An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. Journal of Paleolimnology 18, 165178. https://doi.org/10.1023/A:1007997602935CrossRefGoogle Scholar
Walker, I., Mathewes, R.W., 1988. Late-Quaternary fossil Chironomidae (Diptera) from Hippa Lake, Queen Charlotte Islands, British Columbia, with special reference to Corynocera Zett. The Canadian Entomologist 120, 739751.CrossRefGoogle Scholar
Walker, I., Mathewes, R.W., 1989a. Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient. Journal of Paleolimnology 2, 6180.CrossRefGoogle Scholar
Walker, I., Mathewes, R.W., 1989b. Early postglacial chironomid succession in southwestern British Columbia, Canada, and its paleoenvironmental significance. Journal of Paleolimnology 2, 114. https://doi.org/10.1007/BF00156979CrossRefGoogle Scholar
Walker, I., Pellatt, M.G., 2003. Climate change in coastal British Columbia—a paleoenvironmental perspective. Canadian Water Resources Journal 28, 531566. https://doi.org/10.4296/cwrj2804531CrossRefGoogle Scholar
Walker, I.R., Mathewes, R.W., 1987. Chironomidae (Diptera) and postglacial climate at Marion Lake, British Columbia, Canada. Quaternary Research 27, 89102.CrossRefGoogle Scholar
Walker, I., Smol, J.P., Engstrom, D.R., Birks, H.J.B., 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Canadian Journal of Fisheries and Aquatic Sciences 48, 975987. https://doi.org/10.1139/f91-114CrossRefGoogle Scholar
Wang, T., Hamann, A., Spittlehouse, D., Carroll, C., 2016. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PloS ONE, 11, e0156720. https://doi.org/10.1371/journal.pone.0156720CrossRefGoogle ScholarPubMed
Wiederholm, T. (Ed.), 1983. Chironomidae of the Holarctic Region: Keys and Diagnoses. Entomologica Scandinavica Supplement.Google Scholar
Williams, J.W., Post, D.M., Cwynar, L.C., Lotter, A.F. Levesque, A.J., 2002. Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology, 30, 971974.2.0.CO;2>CrossRefGoogle Scholar