Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T08:25:14.813Z Has data issue: false hasContentIssue false

Centennial- to millennial-scale change of Holocene shallow marine environments recorded in ostracode fauna, northeast Japan

Published online by Cambridge University Press:  20 January 2017

Toshiaki Irizuki*
Affiliation:
Department of Geoscience, Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Japan
Miki Kobe
Affiliation:
Department of Geoscience, Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Japan
Ken’ichi Ohkushi
Affiliation:
Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan
Hodaka Kawahata
Affiliation:
Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
Katsunori Kimoto
Affiliation:
Japan Agency for Marine-earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
*
*Corresponding author.Email Address:[email protected]

Abstract

Using the record of shallow-marine ostracode fauna and sediment grain size data from an 865-cm-long piston core obtained from Mutsu Bay, northeast Japan, paleoceanographic changes of the bay were determined at high resolution for the early to middle Holocene. Changes in the relative frequencies of several species showed periodicities of 1300–1800 years similar to Bond cycles. At around 10,300 cal yr BP and again, at 9500–9300 cal yr BP, cold water strongly influenced the bay owing to cooling events. Since at least 10,200 cal yr BP the Tsugaru Warm Current influenced the surface waters, and since ca. 7400 cal yr BP, also the bottom waters of the bay. Since ca. 8400 cal yr BP the water depth rapidly increased and peaked at 7000–5900 cal yr BP due to global sea-level rise. Subsequently, a drop of water temperature and sea level in the bay at 5900 and around 4000 cal yr BP influenced the composition of the ostracode assemblages. These millennial-scale oscillations in relative sea level and bay temperature during the Holocene can be correlated to paleoclimate records elsewhere.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhikari, D.P., Kumon, F., and Kawajiri, K. Holocene climate variability as deduced from the organic carbon and diatom records in the sediments of lake Aoki, central Japan. Journal of the Geological Society of Japan 108, (2002). 249265.Google Scholar
Alley, R.B., and Ágústsdóttir, A.M. The 8 k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews 24, (2005). 11231149.CrossRefGoogle Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, (1997). 12571266.Google Scholar
Bond, G., Kroemer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffman, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, (2001). 21302136.CrossRefGoogle ScholarPubMed
Boomer, I. Ostracoda as indicators of climatic and human-influenced changes in the Late Quaternary of the Ponto-Caspian region (Aral, Caspian and Black Seas). Horne, D.J., Holmes, J., Rodriguez-Lazaro, J., and Viehberg, F.A. Ostracoda as Proxies for Quaternary Climate Change. Developments in Quaternary Science 17, (2012). Elsevier, 205215.CrossRefGoogle Scholar
Boomer, I., and Eisenhauer, G. Ostracod faunas as paleoenvironmental indicators in marginal marine environments. Holmes, J.A., and Chivas, A.R. The Ostracoda Applications in Quaternary Research. (2002). American Geophysical Union, Washington, DC. 135149.Google Scholar
Boomer, I., von Grafenstein, U., Guichard, F., and Bieda, S. Modern and Holocene sublittoral ostracod assemblages (Crustacea) from the Caspian Sea: A unique brackish, deep-water environment. Palaeogeography Palaeoclimatology Palaeoecology 225, (2005). 173186.CrossRefGoogle Scholar
Cabral, M.C., Freitas, M.C., Andrade, C., and Cruces, A. Coastal evolution and Holocene ostracods in Melides lagoon (SW Portugal). Marine Micropaleontology 60, (2006). 181204.CrossRefGoogle Scholar
Cao, M. Ostracods from Quaternary Hang Hau Formation, Lei Yue Mun, Hong Kong. Li, Z. et al. Fossils and Strata of Hong Kong (Lower Volume). (1998). Science Press, Beijing. 171183. (in Chinese)Google Scholar
Cronin, T.M., and Ikeya, N. The Omma-Manganji ostracod fauna (Plio-Pleistocene) of Japan and the zoogeography of circumpolar species. Journal of Micropalaeontology 6, (1987). 6588.Google Scholar
Cronin, T.M., Kitamura, A., Ikeya, N., Watanabe, M., and Kamiya, T. Late Pliocene climate change 3.4–2.3 Ma: paleoceanographic record from the Yabuta Formation, Sea of Japan. Palaeogeography Palaeoclimatology Palaeoecology 108, (1994). 437455.CrossRefGoogle Scholar
Darby, D.A., Ortiz, J.D., Grosch, C.E., and Lund, S.P. 1,500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift. Nature Geoscience 5, (2012). 897900.CrossRefGoogle Scholar
Debret, M., Bout-Roumazeilles, V., Grousset, F., Desmet, M., McManus, J.F., Massei, N., Sebag, D., Petit, J.-R., Copard, Y., and Trentesaux, A. The origin of the 1500-year climate cycles in Holocene North-Atlantic records. Climate of the Past 3, (2007). 569575.CrossRefGoogle Scholar
deMenocal, P. Cultural responses to climatie change during the Late Holocene. Science 292, (2001). 667673.CrossRefGoogle ScholarPubMed
Frenzel, P., and Boomer, I. The use of ostracods from marginal marine, brackish waters as bioindicators of modern and Quaternary environmental change. Palaeogeography Palaeoclimatology Palaeoecology 225, (2005). 6892.CrossRefGoogle Scholar
Hall, I.R., Bianchi, B.B., and Evans, J.R. Centennial to millennial scale Holocene climate-deep water linkage in the North Atlantic. Quaternary Science Reviews 23, (2004). 15291536.Google Scholar
Hammer, Ø., Harper, D.A.T., and Ryan, P.D. PAST:paleontologicalstatistics software package for education and data analysis. Palaeontologia Electronica 4, (2001). 9 (/http://palaeo-electronica.org/2001_1/past/issue1_01.htmS)Google Scholar
Horn, H.S. Measurement of “overlap” in comparative ecological studies. The American Naturalist 100, (1966). 419424.CrossRefGoogle Scholar
Hughen, K.A., Baillie, M.G.L., Bard, E., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, P.J., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, (2004). 10591086.Google Scholar
Igarashi, Y. Holocene vegetation and climate on Hokkaido Island, northern Japan. Quaternary International 290–291, (2013). 139150.CrossRefGoogle Scholar
Ikeya, N., and Itoh, H. Recent Ostracoda from the Sendai Bay region, Pacific coast of northeastern Japan. Reports of Faculty of Science 25, (1991). Shizuoka University, 93145.Google Scholar
Ikeya, N., and Cronin, T.M. Quantitative analysis of Ostracoda and water masses around Japan: Application to Pliocene and Pleistocene paleoceanography. Micropaleontology 39, (1993). 263281.CrossRefGoogle Scholar
Ikeya, N., and Shiozaki, M. Characteristics of the inner bay ostracodes around the Japanese islands—the use of ostracodes to reconstruct paleoenvironments. Memoirs of the Geological Society of Japan 39, (1993). 1532. (in Japanese, with English Abstr.)Google Scholar
Ikeya, N., Zhou, B.-C., and Sakamoto, J.-I. Modern ostracode fauna from Otsuchi Bay, the Pacific coast of northeastern Japan. Ishizaki, K., and Saito, T. Centenary of Japanese Micropaleontology. (1992). Terra Scientific Publishing Company, Tokyo. 339354.Google Scholar
Irizuki, T., Fujiwara, O., Fuse, K., and Masuda, F. Paleoenvironmental changes during the last post glacial period on the western coast of the Miura Peninsula, Kanagawa Prefecture, Central Japan: Fossil ostracode fauna and event deposits in bore hole cores. Fossils (Palaeontological Society of Japan) 64, (1998). 122. (in Japanese, with English Abstr.)Google Scholar
Irizuki, T., Masuda, F., Miyahara, B., Hirotsu, J., Ueda, S., and Yoshikawa, S. Vertical changes of Holocene ostracodes in bore hole cores from off Kobe, related to the opening of straits and relative sea-level change in western Japan. The Quaternary Research (Daiyonki-kenkyu) 40, (2001). 105120.CrossRefGoogle Scholar
Irizuki, T., Nakamura, Y., Takayashu, K., and Sakai, S. Faunal changes in Ostracoda (Crustacea) in Lake Nakaumi, southwest Japan, over the last 40 years. Geoscience Report of Shimane University 22, (2003). 149160. (in Japanese, with English Abstr.)Google Scholar
Irizuki, T., Ishida, K., and Takata, H. Recent Ostracoda from Urauchi Bay, Kamikoshiki-jima Island, Kagoshima Prefecture, Southwest Japan. Laguna 13, (2006). 1328.Google Scholar
Irizuki, T., Seto, K., and Nomura, R. The impact of fish farming and bank construction on Ostracoda in Uranouchi Bay on the Pacific coast of southwest Japan—Faunal changes between 1954 and 2002/2005—. Paleontological Research 12, (2008). 283302.CrossRefGoogle Scholar
Irizuki, T., Gotomyo, A., Kawano, S., Yoshioka, K., and Nomura, R. Relationships between Recent ostracode assemblage and environmental factors in the northern part of Harima-nada Bay off Aioi City, Hyogo Prefecture, Southwest Japan. Geoscience Report of Shimane University 28, (2009). 19. (in Japanese, with English Abstr.)Google Scholar
Irizuki, T., Ito, H., Yoshioka, K., Kawano, S., Nomura, R., Tanaka, Y., and Sako, M. Recent ostracode assemblages and the marine environment around Kasado Bay in northeastern Suo-nada bay, Yamaguchi Prefecture, Southwest Japan. Geoscience Report of Shimane University 29, (2010). 1120. (in Japanese, with English Abstr.)Google Scholar
Irizuki, T., Takimoto, A., Sako, E., Nomura, R., Kakuno, K., Wanishi, A., and Kawano, S. The influences of various anthropogenic sources of deterioration on meiobenthos (Ostracoda) over the last 100 years in Suo-Nada in the Seto Inland Sea, southwest Japan. Marine Pollution Bulletin 62, (2011). 20302041.Google ScholarPubMed
Irizuki, T., Ito, H., Sako, M., Yoshioka, K., Kawano, S., Nomura, R., and Tanaka, Y. Anthropogenic impacts on meiobenthic Ostracoda (Crustacea) in the moderately polluted Kasado Bay, Seto Inland Sea, Japan, over the past 70 years. Marine Pollution Bulletin 91, (2015). 149159.CrossRefGoogle ScholarPubMed
Ishiwatari, R., Yamada, K., Matsumoto, K., Houtatsu, M., and Naraoka, H. Organic molecular and carbon isotopic records of the Japan Sea over the past 30 kyr. Paleoceanography 14, (1999). 260270.CrossRefGoogle Scholar
Ishizaki, K. Ostracodes from Uranouchi Bay, Kochi Prefecture, Japan. The Science Reports of the Tohoku University, Second Series (Geology). 40, (1968). 145.Google Scholar
Ishizaki, K. Ostracodes from Aomori Bay, Aomori Prefecture, Northeast Honshu, Japan. The Science Reports of the Tohoku University, Second Series (Geology). 43, (1971). 5997.Google Scholar
Isono, D., Yamamoto, M., Irino, T., Oba, T., Murayama, M., Nakamura, T., and Kawahata, H. The 1500-year climate oscillation in the midlatitude North Pacific during the Holocene. Geology 37, (2009). 591594.CrossRefGoogle Scholar
Ivanova, E.V., Murdmaa, I.O., Karpuk, M.S., Schornikov, E.I., Marret, F., Cronin, T.M., Buynevich, I.V., and Platonova, E.A. Paleoenvironmental changes on the northeastern and southwestern Black Sea shelves during the Holocene. Quaternary International 261, (2012). 91104.CrossRefGoogle Scholar
Iwasaki, Y. Ostracod assemblages from the Holocene deposits of Kumamoto, Kyushu. Kumamoto Journal of Science, Earth Sciences 13, (1992). 1324. (in Japanese, with English Abstr.)Google Scholar
Iwatani, H., Irizuki, T., and Hayashi, H. Global cooling in marine climate and local tectonic events in Southwest Japan at the Plio-Pleistocene boundary. Palaeogeography Palaeoclimatology Palaeoecology 350–352, (2012). 118.CrossRefGoogle Scholar
Kawahata, H., Yamamoto, H., Ohkushi, K., Yokoyama, Y., Kimoto, K., Ohshima, H., and Matsuzaki, H. Changes of environments and human activity at the Sannai-Maruyama ruins in Japan during the mid-Holocene Hypsithermal climatic interval. Quaternary Science Reviews 28, (2009). 964974.CrossRefGoogle Scholar
Koizumi, I. Holocene pulses of diatom growths in the warm Tsushima Current in the Japan Sea. Diatom Research 4, (1989). 5568.CrossRefGoogle Scholar
Koizumi, I. Diatom-derived SSTs (Td′ ratio) indicate warm seas off Japan during the middle Holocene (8.2–3.3 kyr BP). Marine Micropaleontology 69, (2008). 263281.CrossRefGoogle Scholar
Koizumi, I., and Sakamoto, T. Synchronous Td'-derived SSTs (°C) off Japan with climatic events in the northern hemisphere. Journal of Geography 119, (2010). 489509. (in Japanese with English Abstr.)CrossRefGoogle Scholar
Koizumi, I., Tada, R., Narita, H., Irino, T., Aramaki, T., Oba, T., and Yamamoto, H. Paleoceanographic history around the Tsugaru Strait between the Japan Sea and the Northwest Pacific Ocean since 30 cal kyr BP. Palaeogeography Palaeoclimatology Palaeoecology 232, (2006). 3652.CrossRefGoogle Scholar
Kuroyanagi, A., Kawahata, H., Narita, H., Ohkushi, K., and Aramaki, T. Reconstruction of paleoenvironmental changes based on the planktonic foraminiferal assemblages off Shimokita (Japan) in the northwestern North Pacific. Global and Planetary Change 53, (2006). 92107.CrossRefGoogle Scholar
Kuroyanagi, A., Kawahata, H., and Ohkushi, K. Reconstruction of paleoceanographic changes based on the relationship between planktonic foraminiferal assemblages and water masses off Shimokita over the last 27,000 years. Fossils (Palaeontological Society of Japan) 79, (2006). 3342. (in Japanese, with English Abstr.)Google Scholar
Lee, E.-H., Huh, M., and Schornikov, E.I. Ostracod fauna from the East Sea coast of Korea and their distribution—Preliminary study on Ostracoda as an indicator of water pollution. Journal of the Geological Society of Korea 36, (2000). 435472. (in Korean, with English Abstr.)Google Scholar
Marco-Barba, J., Holmes, J.A., Mesquita-Joanes, F., and Miracle, M.R. The influence of climate and sea-level change on the Holocene evolution of a Meditarranean coastal lagoon: Evidence from ostracod palaeoecology and geochemistry. Geobios 46, (2013). 409421.CrossRefGoogle Scholar
Masuda, F., Irizuki, T., Fujiwara, O., Miyahara, B., and Yoshikawa, S. A Holocene sea-level curve constructed from a single core at Osaka, Japan (A preliminary note). Memoirs of the Faculty of Science Kyoto University, Series Geology & Mineralogy 59, (2002). 18.Google Scholar
Matsushima, Y. Shallow marine molluscan assemblages of postglacial period in the Japanese Islands—Its historical and geographical changes induced by the environmental changes. Bulletin of the Kanagawa Prefectural Museum Natural Science 15, (1984). 37109. (in Japanese, with English Abstr.)Google Scholar
Matsushima, Y. Warmings of the Tsushima Current during the Holocene as deduced from the distribution of warm molluscan assemblages. The Quaternary Research (Daiyonki-kenkyu) 49, (2010). 110. (in Japanese, with English Abstr.)CrossRefGoogle Scholar
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlén, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., and Steig, E.J. Holocene climate variability. Quaternary Research 62, (2004). 243255.CrossRefGoogle Scholar
Mazzini, I., Anadon, P., Barbieri, M., Castorina, F., Ferreli, L., Gliozzi, E., Mola, M., and Vittori, E. Late Quaternary sea-level changes along the Tyrrhenian coast near Orbetello (Tuscany, central Italy): Palaeoenvironmental reconstruction using ostracods. Marine Micropaleontology 37, (1999). 289311.CrossRefGoogle Scholar
Moros, M., De Deckker, P., Jansen, E., Perner, K., and Telford, R.J. Holocene climate variability in the southern ocean recorded in a deep-sea sediment core off South Australia. Quaternary Science Reviews 28, (2009). 19321940.CrossRefGoogle Scholar
Nakada, M., Yonekura, N., and Lambeck, K. Late Pleistocene and Holocene sea-level changes in Japan: implications for tectonic histories and mantle rheology. Palaeogeography Palaeoclimatology Palaeoecology 85, (1991). 107122.CrossRefGoogle Scholar
Oba, T., Murayama, M., Matsumoto, E., and Nakamura, T. AMS-14C ages of Japan Sea cores from the Oki Ridge. The Quaternary Research (Daiyonki-kenkyu) 34, (1995). 289296. (in Japanese, with English Abstr.)CrossRefGoogle Scholar
Ohtani, K. Westward inflow of the coastal Oyashio water into the Tsugaru Strait. Bulletin of the Faculty of Fisheries 38, (1987). Hokkaido University, 209220. (in Japanese, with English Abstr.)Google Scholar
Ohtani, K., and Terao, T. Oceanographic structure of the Mutsu Bay. Bull. Fac. Bulletin of the Faculty of Fisheries 24, (1973). Hokkaido University, 100131. (in Japanese with English Abstr.)Google Scholar
Ota, Y., Umitsu, M., and Matsushima, Y. Recent Japanese research on relative sea level changes in the Holocene and related problems—Review of studies between 1980 and 1988—. The Quaternary Research (Daiyonki-kenkyu) 29, (1990). 3148. (in Japanese with English Abstr.)CrossRefGoogle Scholar
Ozawa, H. Japan Sea ostracod assemblages in surface sediments: their distribution and relationships to water mass properties. Paleontological Research 7, (2003). 257274.CrossRefGoogle Scholar
Ozawa, H. Okhotsk Sea ostracods in surface sediments: depth distribution of cryophilic species relative to oceanic environment. Marine Micropaleontology 53, (2004). 245260.CrossRefGoogle Scholar
Ozawa, H., and Kamiya, T. Ecological analysis of benthic ostracods in the northern Japan Sea, based on water properties of modern habitats and late Cenozoic fossil records. Marine Micropaleontology 55, (2005). 255276.CrossRefGoogle Scholar
Ozawa, H., and Tsukawaki, S. Preliminary report on modern ostracods in surface sediment samples collected during R.V. Tansei-maru Cruise KT04-20 in the southwestern Okhotsk Sea and the northeastern Japan Sea off Hokkaido, north Japan. Annals of the Research Institute of the Japan Sea Region 39, (2008). 3148.Google Scholar
Ozawa, H., Kamiya, T., Itoh, H., and Tsukawaki, S. Water temperature, salinity ranges and ecological significance of the three families of Recent cold-water ostracods in and around the Japan Sea. Paleontological Research 8, (2004). 1128.CrossRefGoogle Scholar
Ozawa, H., Kamiya, T., Kato, M., and Tsukawaki, S. A preliminary report on the Recent ostracodes in sediment samples from the R.V. Tansei-maru Cruise KT04-14 in the southwestern Okhotsk Sea and the northeastern Japan Sea off Hokkaido. Bulletin of the Japan Sea Research Institute. 35, (2004). Kanazawa University, 3346.Google Scholar
Petit-Maire, N., Bouysse, P. et al. Geological records of the recent past, a key to the near future world environments. Episodes 23, (2000). 230246.CrossRefGoogle Scholar
Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. Numerical Recipes in C. (1992). Cambridge University Press, Google Scholar
Rasmussen, S.O., Vinther, B.M., Clausen, H.B., and Andersen, K.K. Early Holocene climate oscillations recorded in three Greenland ice cores. Quaternary Science Reviews 26, (2007). 19071914.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 terrestrial radiocarbon age calibration, 0–25 cal kyr BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Rodriguez-Lazaro, J., and Ruiz-Muñoz, F. A general introduction to Ostracods: morphology, distribution, fossil record and applications. Horne, D.J., Holmes, J., Rodriguez-Lazaro, J., and Viehberg, F.A. Ostracoda as Proxies for Quaternary Climate Change. Developments in Quaternary Science vol. 17, (2012). Elsevier, Oxford. 114.CrossRefGoogle Scholar
Sakaguchi, Y. Warm and cold stages in the past 7600 years in Japan and their global correlation—Especially on climatic impacts to the global sea level changes and the ancient Japanese history. Bulletin of the Department of Geography 15, (1983). University of Tokyo, 131.Google Scholar
Santos, T.P., Franco, D.R., Barbosa, C.F., Belem, A.L., Dokken, T., and Albuquerque, A.L.S. Millennial- to centennial-scale changes in sea surface temperature in the tropical South Atlantic throughout the Holocene. Palaeogeography Palaeoclimatology Palaeoecology 392, (2013). 18.CrossRefGoogle Scholar
Schornikov, E.I. Ostracoda as indicators of conditions and dynamics of water ecosystems. Martin, R.E. vol. 15 of Topics in Geobiology. Environmental Micropaleontology (2000). Kluwer Academic/Plenum Publishers, New York. 181187.CrossRefGoogle Scholar
Schornikov, E.I. Checklist of the ostracod (Crustacea) fauna of Peter the Great Bay, Sea of Japan. Zootaxa 1294, (2006). 2959.CrossRefGoogle Scholar
Schornikov, E.I., and Chavtur, V.G. Ostracods of rocky and neighboring shallow water biotopes in southwestern of Peter the Great Bay. The state of environment and biota of the southwestern part of Peter the Great Bay and the Tumen River mouth, 3. Dalnauka, Vladivostok. (2001). 85105.Google Scholar
Schornikov, E.I., and Zenina, M.A. Ostracods as indicators of conditions and dynamics of water ecosystems (on the sample of Peter the Great Bay, Sea of Japan). Federal Agency of Research Organizations Russian Academy of Sciences Far Eastern Branch (2014). A.V. Zhirmunsky Institute of Marine Biology, Vladivostok, Dalnauka. (in Russian with English Abstr.)Google Scholar
Smith, A.J., and Palmer, D.F. The versatility of Quaternary ostracods as palaeoclimate proxies: comparative testing of geochemical, ecological and biogeographical approaches. Horne, D.J., Holmes, J., Rodriguez-Lazaro, J., and Viehberg, F.A. Ostracoda as Proxies for Quaternary Climate Change. Developments in Quaternary Science. 17, (2012). Elsevier, 183203.Google Scholar
Smith, D.E., Harrison, S., Firth, C.R., and Jordan, J.T. The early Holocene sea level rise. Quaternary Science Reviews 30, (2011). 18461860.CrossRefGoogle Scholar
Staubwasser, M., Sirocko, F., Grootes, P.M., and Segl, M. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters 30, (2003). 1425 http://dx.doi.org/10.1029/2002GL016822 2003 Google Scholar
Stepanova, A.Y. Late Pleistocene–Holocene and Recent Ostracoda of the Laptev Sea and their importance for paleoenvironmental reconstructions. Paleontological Journal 40, issue 2 supplement (2006). 91204.Google Scholar
Stuiver, M., Reimer, R.J., and Reimer, R.W. CALIB 5.0. [WWW program and documentat]. (2005). Quaternary Research Center, University of Washington, Seattle. (Available from: http://radiocarbon.pa.qub.ac.uk/calib/calib.html)Google Scholar
Takata, H., Itaki, T., Ikehara, K., and Yamada, K. Significant Tsushima Warm Current during the Early–Middle Holocene along the San-in District Coast inferred from foraminiferal profiles. The Quaternary Research (Daiyonki-kenkyu) 45, (2006). 249256. (in Japanese with English Abstr.)Google Scholar
Takata, H., Khim, B.-K., Cheong, D., Shin, S., Takayasu, K., Park, Y., and Lim, H.S. Holocene benthic foraminiferal faunas in coastal deposits of the Nakgdong River delta (Korea) and Izumo Plain (Japan). Quaternary International (2015). http://dx.doi.org/10.1016/j.quaint.2015.07.014 (in press) Google Scholar
Takei, T., Minoura, K., Tsukawaki, S., and Nakamura, T. Intrusion of a branch of the Oyashio Current into the Japan Sea. Paleoceanography 17, (2002). 335349.CrossRefGoogle Scholar
Tanaka, G., Matsushima, Y., and Maeda, H. Holocene ostracods from the borehole core at Oppama Park, Yokosuka City, Kanagawa Prefecture, central Japan: Paleoenvironmental analysis and the discovery of a fossil ostracod with three-dimensionally preserved soft parts. Paleontological Research 16, (2012). 118.CrossRefGoogle Scholar
Viehberg, F.A., Frenzel, P., and Hoffmann, G. Succession of late Pleistocene and Holocene ostracode assemblages in transgressive environment: A study at a coastal locality of southern Baltic Sea (Germany). Palaeogeography Palaeoclimatology Palaeoecology 264, (2008). 318329.Google Scholar
von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., Sigfus, J., and Johnsen, S.J. A mid-European decadal isotope-climate record from 15,500 to 5000 years B.P.. Science 284, (1999). 16541657.CrossRefGoogle Scholar
Wang, Q., and Zhang, L. Holocene ostracod fauna and paleoenvironment in the sea region around Hong Kong. Acta Oceanologica Sinica 6, Suppl. II (1987). 281291.Google Scholar
Wang, Q., Li, Y., Tian, G., and Lin, F. Quaternary marine Ostracoda on the west coast of Bohai Sea. Acta Oceanologica Sinica 7, (1988). 94103.Google Scholar
Wanner, H., Solomina, O., Grosjean, M., Ritz, S.P., and Jetel, M. Structure and origin of Holocene cold events. Quaternary Science Reviews 30, (2011). 31093123.Google Scholar
Yamane, K. Recent ostracode assemblages from Hiuchi-nada bay, Seto Inland Sea of Japan. Bulletin of Ehime Prefectural Science Museum 3, (1998). 1959. (in Japanese with English Abstr.)Google Scholar
Yasuda, Y., Fujiki, T., Nasu, H., Kato, M., Morita, Y., Mori, Y., Kanehara, M., Toyama, S., Yano, A., Okuno, M., Jiejun, H., Ishihara, S., Kitagawa, H., Fukusawa, H., and Naruse, T. Environmental archaeology at the Chengtoushan site, Hunan Province, China, and implications for environmental change and the rise and fall of the Yangtze River civilization. Quaternary International 123–125, (2004). 149158.CrossRefGoogle Scholar
Yasuhara, M. Holocene ostracod palaeobiogeography of the Seto Inland Sea, Japan: impact of opening of the strait. Journal of Micropalaeontology 27, (2008). 111116.CrossRefGoogle Scholar
Yasuhara, M., and Irizuki, T. Recent Ostracoda from the northeastern part of Osaka Bay, southwestern Japan. Journal of Geosciences. Osaka City University 44, (2001). 5795.Google Scholar
Yasuhara, M., Irizuki, T., Yoshikawa, S., and Nanayama, F. Changes in Holocene ostracode faunas and depositional environments in the Kitan Strait, southwestern Japan. Paleontological Research 6, (2002). 8599.Google Scholar
Yasuhara, M., Irizuki, T., Yoshikawa, S., and Nanayama, F. Holocene sea-level changes of Osaka Bay, western Japan: ostracode evidence in a drilling core from the southern Osaka Plain. Journal of the Geological Society of Japan 108, (2002). 633643.Google Scholar
Yasuhara, M., Irizuki, T., Yoshikawa, S., Nanayama, F., and Mitamura, M. Holocene ostracode paleobiogeography in Osaka Bay, southwestern Japan. Marine Micropaleontology 53, (2004). 1136.CrossRefGoogle Scholar
Yasuhara, M., Yoshikawa, S., and Nanayama, F. Reconstruction of the Holocene seismic history of a seabed fault using relative sea-level curves reconstructed by ostracode assemblages: case study on the Median Tectonic Line in Iyo-nada Bay, western-Japan. Palaeogeography Palaeoclimatology Palaeoecology 222, (2005). 285312.CrossRefGoogle Scholar
Young, N.E., Briner, J.P., Axford, Y., Csatho, B., Babonis, G.S., Rood, D.H., and Finkel, R.C. Response of a marine‐terminating Greenland outlet glacier to abrupt cooling 8200 and 9300 years ago. Geophysical Research Letters 38, (2011). L24701CrossRefGoogle Scholar
Yu, Y., Yang, T., Li, J., Liu, J., An, C., Liu, X., Fan, Z., Lu, Z., Li, Y., and Su, X. Millennial-scale Holocene climate variability in the NW China drylands and links to the tropical Pacific and the North Atlantic. Palaeogeography Palaeoclimatology Palaeoecology 233, (2006). 149162.Google Scholar
Zenina, M.A. Influence of anthropogenic pollution on ostracod assemblages of Amurskii Bay, Sea of Japan. Russian Journal of Marine Biology 35, (2009). 305312.Google Scholar
Zenina, M.A., and Schornikov, E.I. Ostracod assemblages of the freshened part of Amursky Bay and lower reaches of the Razdolnaya River (Sea of Japan). Lutaenko, K.A., and Vaschenko, M.A. Ecological Studies and the State of the Ecosystem of Amursky Bay and the Estuarine Zone of the Razdolnaya River (Sea of Japan). Russian Academy of Sciences Far East Branch 1, (2008). A.V. Zhirmunsky Institute of Marine Biology, Vladivostok, Dalnauka. 156185.Google Scholar
Zhao, Q., and Wang, P. Modern Ostracoda in sediments of shelf seas off China: Quantitative and qualitative distributions. Oceanologia et Limnologia Sinica 19, (1988). 553561. (in Chinese, with English Abstr.)Google Scholar
Zhao, Q., and Wang, P. Distribution of modern Ostracoda in the shelf seas off China. Hanai, T., Ikeya, N., and Ishizaki, K. Evolutionary Biology of Ostracoda its Fundamentals and Applications. (1988). Kodansha Tokyo, Elsevier Amsterdam-Oxford-New York-Tokyo. 805821.Google Scholar
Zhou, J., Wang, S., Yang, G., and Xiao, H. Younger Dryas and cold events in early-mid Holocene: record from the sediment of Erhai Lake. Adv. Climate Change Research 3, (2007). 4144.Google Scholar
Zhu, X., and Lin, H. Fossil fauna and transgressive sequence from core QC2 in the South Huanghai Sea. Acta Oceanologica Sinica 9, (1990). 561578.Google Scholar
Supplementary material: File

Irizuki et al. supplementary material

Table S1

Download Irizuki et al. supplementary material(File)
File 88.9 KB