Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T12:46:12.136Z Has data issue: false hasContentIssue false

Calibrating the pollen signal in modern rodent middens from northern Chile to improve the interpretation of the late Quaternary midden record

Published online by Cambridge University Press:  20 January 2017

María Eugenia de Porras*
Affiliation:
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl Bitrán 1305, Colina del Pino, La Serena, Chile
Antonio Maldonado
Affiliation:
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl Bitrán 1305, Colina del Pino, La Serena, Chile Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile Universidad de La Serena, La Serena, Chile
Andrés Zamora-Allendes
Affiliation:
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl Bitrán 1305, Colina del Pino, La Serena, Chile Universidad de La Serena, La Serena, Chile Institute of Ecology and Biodiversity (IEB), Santiago, Chile
Claudio Latorre
Affiliation:
Institute of Ecology and Biodiversity (IEB), Santiago, Chile Departamento de Ecología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
*
*Corresponding author.

Abstract

The use of rodent middens from northern Chile as paleoecological archives has at times been questioned due to concerns about their biogenic origin and the degree to which their record represents vegetation composition rather than rodent habits. To address such concerns, we carried out a modern calibration study to assess the representation of vegetation by pollen records from rodent middens. We compared vegetation censuses with soil-surface and midden (matrix and feces) pollen samples from sites between 21° and 28°S. The results show that (1) the pollen signal from the midden matrix provides a more realistic reflection of local vegetation than soil-surface samples due to the pollen-deposition processes that occur in middens; and (2) in contrast to feces pollen assemblages, which feature some biases, rodent dietary habits do not seem to influence midden matrix pollen assemblages, probably because midden agents are dietary generalists. Our finding that modern pollen data from rodent middens reflect vegetation patterns confirms the reliability of midden pollen records as paleoecological archives in northern Chile.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, D.P., and Merhinger, J.M. Modern pollen surface sample: analysis of subsamples. Journal of Research of the US Geological Survey 3, (1975). 733736.Google Scholar
Aitchison, J. The Statistical Analysis of Compositional Data. (1986). Chapman and Hall, London.Google Scholar
Anupama, K., Ramesh, B.R., and Bonnefille, R. Modern pollen rain from the Biligirirangan-Melagiri hills of southern Eastern Ghats, India. Review of Palaeobotany and Palynology 108, (2000). 175196.Google Scholar
Arroyo, M.T.K., Squeo, F.A., Armesto, J.J., and Villagrán, C. Effects of aridity on plant diversity in the Northern Chilean Andes: result of a natural experiment. Annals of the Missouri Botanical Garden 75, (1988). 5578.Google Scholar
Betancourt, J.L., and Saavedra, B. Paleomadrigueras de roedores, un nuevo método paleoecológico para el estudio del Cuaternario en zonas áridas en Sudamérica. Revista Chilena de Historia Natural 75, (2002). 527546.Google Scholar
Betancourt, J.L., Van Devender, T.R., and Martin, P.S. Packrat middens: the last 40,000 years of biotic change. (1990). The University of Arizona Press, Tucson. 467 Google Scholar
Betancourt, J.L., Latorre, C., Rech, J.A., Quade, J., and Rylander, K.A. A 22,000-year record of monsoonal precipitation from Nortern Chile's Atacama Desert. Science 289, (2000). 15421546.Google Scholar
Birks, H.J.B., and Gordon, A.D. Numerical Methods in Quaternary Pollen Analysis. (1985). Academic Press Inc., Google Scholar
Collao-Alvarado, K., Maldonado, A., González, L., Sandoval, A., de Porras, M.E., Zamora, A., and Arancio, G. Estudio de la relación polen-vegetación actual en el Norte de Chile, en el transecto Pozo Almonte-Salar de Huasco (20°15’S/69°06’O). Gayana Botánica 72, (2015). 125136.Google Scholar
Cortés, A., Rau, J.R., Miranda, E., and Jiménez, J.E. Hábitos alimenticios de Lagidium viascacia y Abrocoma cinerea: roedores sintópicos en ambientes altoandinos del norte de Chile. Revista Chilena de Historia Natural 75, (2002). 583593.Google Scholar
Davis, O.K., and Anderson, R.S. Pollen in packrat (Neotoma) middens: pollen transport and the relationship of pollen to vegetation. Palynology 11, (1987). 185198.Google Scholar
Díaz, F.P., Latorre, C., Maldonado, A., Quade, J., and Betancourt, J.L. Rodent middens reveal episodic, long-distance plant colonizations across the hyperarid Atacama Desert over the last 34,000 years. Journal of Biogeography 39, (2012). 510525.Google Scholar
Faegri, K., and Iversen, J. Textbook of Pollen Analysis. 4th ed. (1989). John Wiley & Sons, Google Scholar
Faegri, K., and van der Pijl, L. The Principles of Pollination Ecology. 3rd ed. (1979). Pergamon Press, Oxford.Google Scholar
Gajewski, K., Lezine, A.-M., Vincens, A., Delestan, A., Sawada, M., APDmembers, Climate-vegetation-pollen relations in Africa and adjacent areas. Quaternary Science Reviews 21, (2002). 16111631.Google Scholar
Garreaud, R. The Andes climate and weather. Advances in Geosciences 7, (2009). 19.Google Scholar
Garreaud, R.D., Vuille, M., and Clement, A. The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology 304, (2003). 118.Google Scholar
Gil-Romera, G., Scott, L., Marais, E.n., and Brook, G.A. Late Holocene environmental change in the northwestern Namib Desert margin: new fossil pollen evidence from hyrax middens. Palaeogeography, Palaeoclimatology, Palaeoecology 249, (2007). 117.Google Scholar
Grimm, E. Tilia Software 1.7.16, Illinois State Museum. (2011). Research and Collection Center, Springfield, Illinois.Google Scholar
Grosjean, M., Cartajena, I., Geyh, M.A., and Nuñez, L. From proxy data to paleoclimate interpretation: the mid-Holocene paradox of the Atacama Desert, northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 247258.Google Scholar
Heusser, C.J. Pollen and spores of Chile. (1971). University of Arizona, Tucson.Google Scholar
Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., Palmer, J.G., Reimer, P.J., Reimer, R.W., Turney, C.S.M., and Zimmerman, S.R.H. SHCal13 Southern Hemisphere calibration, 0-50,000 years cal BP. Radiocarbon 55, (2013). 18891903.Google Scholar
Jackson, S.T. Pollen source area and representation in small lakes of the Northeastern United States. Review of Palaeobotany and Palynology 63, (1990). 5376.Google Scholar
King, J.E., and Van Devender, T.R. Pollen analysis of fossil packrat middens from the Sonoran Desert. Quaternary Research 8, (1977). 191204.Google Scholar
Kuentz, A., De Mera, A.G., Ledru, M.-P., and Thouret, J.-C. Phytogeographical data and modern pollen rain of the puna belt in southern Peru (Nevado Coropuna, Western Cordillera). Journal of Biogeography 34, (2007). 17621776.Google Scholar
Latorre, C., Betancourt, J.L., Rylander, K.A., and Quade, J. Vegetation invasions into absolute desert: a 45 000 yr rodent midden record from the Calama-Salar de Atacama basins, northern Chile (lat 22°–24°S). Geological Society of America Bulletin 114, (2002). 349366.Google Scholar
Latorre, C., Betancourt, J.L., Rylander, K.A., Quade, J., and Matthei, O. A vegetation history from the arid prepuna of northern Chile (22–23° S) over the last 13,500 years. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 223246.Google Scholar
Latorre, C., Betancourt, J.L., Quade, J., Rech, J.A., Holmgren, C., Placzek, C., Maldonado, A., Vuille, M., and Rylander, K.A. Late Quaternary History of the Atacama Desert. Smith, M., and Hesse, P. 23° South: The Archaeology and Environmental History of the Southern Deserts. (2005). National Museum of Australia Press, Canberra.Google Scholar
Latorre, C., Moreno, P.I., Vargas, G., Maldonado, A., Villa-Martínez, R., Armesto, J.J., Villagrán, C., Pino, M., Núñez, L., and Grosjean, M. Late Quaternary environments and paleoclimate. Moreno, T., and Gibbons, W. The Geology of Chile. (2007). London Geological Society Press, London. 309328.Google Scholar
Maldonado, A., Betancourt, J.L., Latorre, C., and Villagrán, C. Pollen analyses from a 50,000-Yr rodent midden series in the Southern Atacama Desert (25°30'S). Journal of Quaternary Science 20, 5 (2005). 493507.Google Scholar
Markgraf, V., and D'Antoni, H.L. Pollen flora of Argentina. (1978). University of Arizona, Tucson.Google Scholar
Markgraf, V., Webb, R.S., Anderson, K.H., and Anderson, L. Modern pollen/climate calibration for southern South America. Palaeogeography, Palaeoclimatology, Palaeoecology 181, (2002). 375397.CrossRefGoogle Scholar
Marquet, P., Bozinovic, F., Bradshaw, G., Cornelius, C., González, H., Gutiérrez, J., Hajek, E., Lagos, J., López-Cortés, F., Núñez, L., Rosello, E., Santoro, C., Samaniego, H., Standen, V., Torres-Mura, J., F., J., Los ecosistemas del desierto de Atacama y área andina adyacente en el norte de Chile. Revista Chilena de Historia Natural 71, (1998). 593617.Google Scholar
McAuliffe, J.R. A rapid method for the estimation of density and cover in desert plant communities. Journal of Vegetation Science 1, (1990). 653656.Google Scholar
Montecinos, A., Díaz, A., and Aceituno, P. Seasonal diagnostic and predictability of rainfall in subtropical South America based on tropical pacific SST. Journal of Climate 13, (2000). 746758.Google Scholar
Mujica, I.M., Latorre, C., Maldonado, A., Gonzalez-Silvestre, L., Pinto, R., de Pol-Holz, R., and Santoro, C. Late Quaternary climate change, relict populations and present-day refugia in the northern Atacama Desert: a case study from Quebrada La Higuera (18°S). Journal Of Biogeography 42, 1 (2015). 7688.Google Scholar
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., and Wagner, H. R package version 2.0-10. (2013). Community Ecology Package, Vegan. (http://CRAN.R-project.org/package=vegan)Google Scholar
Ortuño, T., Ledru, M.-P., Cheddadi, R., Kuentz, A., Favier, C., and Beck, S. Modern pollen rain, vegetation and climate in Bolivian ecoregions. Review of Palaeobotany and Palynology 165, (2011). 6174.Google Scholar
Pliscoff, P., Luebert, F., Hilger, H.H., and Guisan, A. Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: a test with plants in an arid environment. Ecological Modelling 288, (2014). 166177.Google Scholar
Prentice, I.C., Berglund, B.E., and Olsson, T. Quantitative forest-composition sensing characteristics of pollen samples from Swedish lakes. Boreas 16, (1987). 4354.Google Scholar
R Core Team, R: A language and environment for statistical computing. (2014). R Foundation for Statistical Computing, Vienna, Austria. (http://www.R-project.org/)Google Scholar
Reese, C.A., and Liu, K.-B. A modern pollen rain study from the central Andes region of South America. Journal of Biogeography 32, (2005). 709718.Google Scholar
Reimer, P.J., Brown, T.A., and Reimer, R.W. Discussion: reporting and calibration of post-Bomb14C data. Radiocarbon 46, (2004). 2991304.Google Scholar
Rozas, E. Cambios vegetacionales y paleoclima del Valle del Río Huasco (29°S) durante el Holoceno inferidos a partir del análisis de polen preservado en paleomadrigueras de roedores. (2012). Departamento de Biología. Universidad de La Serena, La Serena. 63 Google Scholar
Rundel, P.W., Dillon, M.O., Palma, B., Mooney, H.A., Gulmon, S.L., and Ehleringer, J.R. The phytogeography and ecology of the coastal Atacama and Peruvian deserts. Aliso 13, (1991). 149.Google Scholar
Rutlland, J., and Ulriksen, P. Boundary layer dynamics of the extremely arid northern Chile: the Antofagasta field experiment. Boundary Layer Meteorology 17, (1979). 1333.Google Scholar
Rutllant, J., and Fuenzalida, H. Synoptic aspects of the central Chile rainfall variability associated with the southern Oscillation. International Journal of Climatology 11, (1991). 6376.Google Scholar
Schmithüsen, J. Die raumliche Ordnung der chilenischen Vegetation. Bonner Geographische Abhandlungen 17, (1956). 186.Google Scholar
Schulz, N., Aceituno, P., and Richter, M. Phytogeographic divisions, climate change and plant die back along the coastal desert of northern Chile. Erdkunde 65, (2011). 169187.Google Scholar
Scott, L., Marais, E., and Brook, G.A. Fossil hyrax dung and evidence of Late Pleistocene and Holocene vegetation types in the Namib Desert. Journal of Quaternary Science 19, (2004). 829832.Google Scholar
Spotorno, A., Zuleta, C., Gantz, A., Saiz, F., Rau, J., Rosenmann, M., Cortés, A., Ruiz, G., Yates, L., Couve, E., and Marin, J. Sistemática y adaptación de mamíferos, aves e insectos fitófagos de la Región de Antofagasta, Chile. Revista Chilena de Historia Natural 71, (1998). 501526.Google Scholar
Stuiver, M., Reimer, P.J., and Reimer, R.W. CALIB 5.0. (2005). (WWW program and documentation)Google Scholar
Thompson, R.S. Palynology and Noetoma middens. AASP Contribution Series 16, (1985). 89112.Google Scholar
Villagran, C., Armesto, J., and Arroyo, M.T.K. Vegetation in a high Andean transect between Turi and cerro León in northern Chile. Vegetatio 48, (1981). 316.Google Scholar
Villagrán, C., Kalin-Arroyo, M.T., and Marticorena, C. Efectos de la desertización en la distribución de la flora andina de Chile. Revista Chilena de Historia Natural 56, (1983). 137157.Google Scholar
Walker, D. Pollen input to, and incorporation in, two crater lakes in tropical northeast Australia. Review of Palaeobotany and Palynology 111, (2000). 253283.Google Scholar
Weng, C.Y., Bush, M.B., and Silman, M.R. An analysis of modern pollen rain on an elevational gradient in southern Peru. Journal of Tropical Ecology 20, (2004). 113124.Google Scholar