Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T23:10:30.572Z Has data issue: false hasContentIssue false

Bromine as indicator of source of lacustrine sedimentary organic matter in paleolimnological studies

Published online by Cambridge University Press:  01 March 2019

Sergio Ribeiro Guevara*
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400 Bariloche, Argentina
Andrea Rizzo
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400 Bariloche, Argentina Centro Científico Tecnológico–CONICET–Patagonia Norte, 8400 Bariloche, Argentina
Romina Daga
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400 Bariloche, Argentina Centro Científico Tecnológico–CONICET–Patagonia Norte, 8400 Bariloche, Argentina
Natalia Williams
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400 Bariloche, Argentina Centro Científico Tecnológico–CONICET–Patagonia Norte, 8400 Bariloche, Argentina
Stefania Villa
Affiliation:
Universidad Nacional de Río Negro, 8332 Gral. Roca, Argentina
*
*Corresponding author e-mail address: [email protected]

Abstract

Bromine (Br) to organic matter (OM) concentration ratio is studied in lake sediment sequences to provide information on environmental changes modifying OM production. The sequences studied were extracted from shallow lakes Morenito, El Trébol, Escondido, and Portezuelo; and deep lakes Futalaufquen, Moreno, and Traful (North Patagonia Andean range). Lake Morenito, a former Lake Moreno bay until its closure in AD 1960, showed a decrease in Br:OM ratios from 1.38 to 0.74 after lake closure, associated with an increase of primary autochthonous productivity attributable to the development of submerged and emerging macrophytes. Sedimentary sequences from Lakes Escondido, Portezuelo, and El Trébol (with large participation of macrophytes in primary productivity), and from Lakes Moreno, Futalaufquen, and Traful (with little development of littoral macrophytes), showed Br:OM ratios consistent with the Lake Morenito pattern. Consistently, the morphometric parameters mean depth and shoreline development correlate with Br:OM ratios. Therefore, Br:OM ratios can be associated with the composition of primary autochthonous productivity, with values of about 0.7 associated to significant macrophyte contributions, and higher values associated with more pelagic contributions. Accordingly, Br:OM variations along a sedimentary sequence can be associated with modifications on the composition of the primary autochthonous productivity of the water body, providing information on environmental changes.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alonso, C., Rocco, V., Barriga, J.P., Battini, M.A., 2004. Surface avoidance by freshwater zooplankton: field evidence on the role of ultraviolet radiation. Limnology and Oceanography 49, 225232.Google Scholar
Bastidas Navarro, M., Balseiro, E., Modenutti, B., 2009a. Effect of UVR on lake water and macrophyte leachates in shallow Andean-Patagonian lakes: bacteria responses to changes in optical features. Photochemistry and Photobiology 85, 332340.Google Scholar
Bastidas Navarro, M., Modenutti, B., 2007. Efecto de la estructuración por macrófitas y por recursos alimentarios en la distribución horizontal de tecamebas y rotíferos en un lago andino patagónico. Revista Chilena de Historia Natural 80, 345362.Google Scholar
Bastidas Navarro, M., Modenutti, B., Callieri, C., Bertoni, R., Balseiro, E., 2009b. Balance between primary and bacterial production in North Patagonian shallow lakes. Aquatic Ecology 43, 867878.Google Scholar
Bertrand, S., Boes, X., Castiaux, J., Charlet, F., Urrutia, R., Espinoza, C., Lepoint, G., Charlier, B., Fagel, N., 2005. Temporal evolution of sediment supply in Lago Puyehue (southern Chile) during the last 600 yr and its climatic significance. Quaternary Research 64, 163175.Google Scholar
Biester, H., Selimović, D., Hemmerich, S., Petri, M., 2006. Halogens in pore water of peat bogs – the role of peat decomposition and dissolved organic matter. Biogeosciences 3, 5364.Google Scholar
Boës, X., Rydberg, J., Martinez-Cortizas, A., Bindler, R., Renberg, I., 2011. Evaluation of conservative lithogenic elements (Ti, Zr, Al, and Rb) to study anthropogenic element enrichments in lake sediments. Journal of Paleolimnology 46, 7587.Google Scholar
Bubach, D., Pérez Catán, S., Arribére, M.A., Ribeiro Guevara, S., 2012. Bioindication of volatile elements emission by the Puyehue–Cordón Caulle (North Patagonia) volcanic event in 2011. Chemosphere 88, 584590.Google Scholar
Bureau, H., Keppler, H., Métrich, N., 2000. Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemistry. Earth and Planetary Science Letters 183, 5160.Google Scholar
Caselli, A.T., Agusto, M., Velez, M.L., Forte, P., Bengoa, C., Daga, R., Albite, J.M., Capaccioni, B., 2015. The 2012 eruption. In: Tassi, F., Vaselli, O., Caselli, A.T. (Eds.), Copahue Volcano. Active Volcanoes of the World. Springer-Verlag, Heidelberg, Germany, pp. 6177.Google Scholar
Chu, G., Sun, Q., Li, S., Li, Y., Wang, X., Xie, M., Shang, W., Li, A., Yang, K., 2013. Minor element variations during the past 1300 years in the varved sediments of Lake Xiaolongwan, north-eastern China. GFF 135, 265272.Google Scholar
Clarke, K.R., Somerfield, P.J., Gorley, T.N., 2008. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology and Ecology 366, 5969.Google Scholar
Clarke, K.R., Warwick, R.M., 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd ed. Natural Environment Research Council, London.Google Scholar
Daga, R., Ribeiro Guevara, S., Arribére, M.A., 2016. New records of late Holocene tephras from Lake Futalaufquen (42.8°S), northern Patagonia. Journal of South American Earth Sciences 66, 232247.Google Scholar
Daga, R., Ribeiro Guevara, S., Poiré, D., Arribére, M.A., 2014. Characterization of dispersed volcanic products generated in recent events in the Northern Patagonia Andean Range: volcanoes Calbuco (1961) and Chaitén (2008), and Puyehue–Cordón Caulle complex (1960 and 2011). Journal of South American Earth Sciences 49, 114.Google Scholar
Daga, R., Ribeiro Guevara, S., Sánchez, M.L., Arribére, M.A., 2008. Source identification of volcanic ashes by geochemical analysis of well preserved lacustrine tephras in Nahuel Huapi National Park. Applied Radiation and Isotopes 66, 13251336.Google Scholar
Daga, R., Ribeiro Guevara, S., Sánchez, M.L., Arribére, M.A., 2010. Tephrochronology of recent events in Northern Patagonia Andean Range: spatial distribution and provenance of lacustrine ash layers in Nahuel Huapi National Park. Journal of Quaternary Science 25, 11131123.Google Scholar
DeMaster, D.J., 1981. The supply and accumulation of silica in the marine environment. Geochimica et Cosmochimica Acta 45, 17151732.Google Scholar
Díaz, M., Pedrozo, F., Reynolds, C., Temporetti, P., 2007. Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica 37, 1727.Google Scholar
Gilfedder, B.S., Petri, M., Wessels, M., Biester, H., 2011. Bromine species fluxes from Lake Constance's catchment, and a preliminary lake mass balance. Geochimica et Cosmochimica Acta 75, 33853401.Google Scholar
Harvey, G.R., 1980. A study of the chemistry of iodine and bromine in marine sediments. Marine Chemistry 8, 327332.Google Scholar
Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101110.Google Scholar
Kappler, A., Ji., R., Schink, B., Brune, A., 2001. Dynamics in composition and size-class distribution of humic substances in profundal sediments of Lake Constance. Organic Geochemistry 32, 310.Google Scholar
Kutterolf, S., Hansteen, T., Freundt, A., Wehrmann, H., Appel, K., Krüger, K., Pérez, W., 2015. Bromine and chlorine emissions from Plinian eruptions along the Central American Volcanic Arc: from source to atmosphere. Earth and Planetary Science Letters 429, 234246.Google Scholar
Lara, L., Moreno, H., Naranjo, J., Matthews, S., Pérez De Arce, C., 2006. Magmatic evolution of the Puyehue–Cordón Caulle Volcanic Complex (40° S), Southern Andean Volcanic Zone: from shield to unusual rhyolitic fissure volcanism. Journal of Volcanology and Geothermal Research 157, 343366.Google Scholar
Leri, A., Hakala, A., Marcus, M.A., Lanzirotti, A., Reddy, C.M., Myneni, S.C.B., 2010. Natural organobromine in marine sediments: new evidence of biogeochemical Br cycling. Global Biogeochemical Cycles 24, GB4017.Google Scholar
Leri, A.C., Mayer, L.M., Thornton, K.R., Ravel, B., 2014. Bromination of marine particulate organic matter through oxidative mechanisms. Geochimica et Cosmochimica Acta 142, 5363.Google Scholar
Leri, A.C., Myneni, S.C.B., 2012. Natural organobromine in terrestrial ecosystems. Geochimica et Cosmochimica Acta 77, 110.Google Scholar
López-Escobar, L., Parada, M., Moreno, H., 1992. A contribution to the petrogenesis of Osorno and Calbuco volcanoes, Southern Andes (41°00′−41°30′S): comparative study. Revista Geológica de Chile 19, 211226.Google Scholar
Massaferro, J., Ribeiro Guevara, S., Rizzo, A., Arribére, M., 2005. Short-term environmental changes in Lake Morenito (41°S, 71°W, Patagonia, Argentina) from the analysis of sub-fossil chironomids. Aquatic Conservation: Marine and Freshwater Ecosystems 15, 2330.Google Scholar
Mayer, L.M., Macko, S.A., Mook, W.H., Murray, S., 1981. The distribution of bromine in coastal sediments and its use as a source indicator for organic matter. Organic Geochemistry 3, 3742.Google Scholar
Mayer, L.M., Schick, L.L., Allison, M.A., Ruttenberg, K.C., Bentley, S.J., 2007. Marine vs. terrigenous organic matter in Louisiana coastal sediments: the uses of bromine:organic carbon ratios. Marine Chemistry 107, 244254.Google Scholar
Meyers, P.A., Ishiwatari, R., 1993. Lacustrine organic geochemistry–an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry 20, 867900.Google Scholar
Meyers, P.A., Lallier-Vergès, E., 1999. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. Journal of Paleolimnology 21, 345372.Google Scholar
Modenutti, B.E., Pérez, G.L., 2001. Planktonic ciliates from an oligotrophic South Andean lake, Morenito Lake (Patagonia, Argentina). Revista Brasleira de Biologia 61, 389395.Google Scholar
Oldfield, F., Wake, R., Boyle, J., Jones, R., Nolan, S., Gibbs, Z., Appleby, P., Fisher, E., Wolff, G., 2003. The late-Holocene history of Gormire Lake (NE England) and its catchment: a multiproxy reconstruction of past human impact. Holocene 13, 677690.Google Scholar
Oppenheimer, C., Tsanev, V., Braban, C.F., Cox, R.A., Adams, J.W., Aiuppa, A., Bobrowski, N., Delmelle, P., Barclay, J., McGonigle, A.J.S., 2006. BrO formation in volcanic plumes. Geochimica et Cosmochimica Acta 70, 29352941.Google Scholar
Pizzolon, L., 1995. Lago Futalaufquen. In: Calcagno, A., Fioriti, M., Pedrozo, F., Vigliano, P., López, H., Rey, C., Razquin, M., Quirós, R. (Eds.), Catálogo de lagos y embalses de la Argentina. Subsecretaría de Recursos Hídricos, Secretaría de Obras Públicas, Buenos Aires, Argentina.Google Scholar
Queimaliños, C.P., 2002. The role of phytoplanktonic size fractions in the microbial food webs in two north Patagonian lakes (Argentina). Verhandlungen: Internationale Vereinigung für Theoretische und Angewandte Limnologie 28, 12361240.Google Scholar
Queimaliños, C.P., Reissig, M., Diéguez, M.C., Arcagni, M., Ribeiro Guevara, S., Campbell, L., Soto Cárdenas, C., Rapacioli, R., Arribére, M.A., 2012. Influence of precipitation, landscape and hydrogeomorphic lake features on pelagic allochthonous indicators in two connected ultraoligotrophic lakes of North Patagonia. Science of the Total Environment 427–428, 219228.Google Scholar
Ribeiro Guevara, S., Arribére, M., 2002. 137Cs dating of lake cores from the Nahuel Huapi National Park, Patagonia, Argentina: historical records and profile measurements. Journal of Radioanalytical and Nuclear Chemistry 252, 3745.Google Scholar
Ribeiro Guevara, S., Rizzo, A., Sánchez, R., Arribére, M., 2003. 210Pb fluxes in sediment layers sampled from Northern Patagonia lakes. Journal of Radioanalytical and Nuclear Chemistry 258, 583595.Google Scholar
Robbins, J.A., Herche, L.R., 1993. Models and uncertainty in 210Pb dating of sediments. Verhandlungen: Internationale Vereinigung für Theoretische und Angewandte Limnologie 25, 217222.Google Scholar
Romero, J.E., Morgavi, D., Arzilli, F., Daga, R., Caselli, A., Reckziegel, F., Viramonte, J., et al. , 2016. Eruption dynamics of the 22–23 April 2015 Calbuco Volcano (southern Chile): analyses of tephra fall deposits. Journal of Volcanology and Geothermal Research 317, 1529.Google Scholar
Smol, J.P., 2008. Pollution of Lakes and Rivers: A Paleoenvironmental Perspective. Blackwell, Oxford, UK.Google Scholar
Stern, C., 2004. Active Andean volcanism: its geologic and tectonic setting. Revista Geológica de Chile 31, 161206.Google Scholar
ten Haven, H.L., de Leeuw, J.W., Schenck, P.A., Klaver, G.T., 1988. Geochemistry of Mediterranean sediments: bromine/organic carbon and uranium/organic carbon ratios as indicators for different sources of input and post-depositional oxidation, respectively. Organic Geochemistry 13, 255261.Google Scholar
Vigliano, P.H., Macchi, P.J., Alonso, M., Denegri, M.A., García Asorey, M., Lippolt, G., 2008. Gill net and hydroacoustic fish resource evaluation of an ultraoligotrophic lake of Northern Patagonia Argentina. American Fisheries Society Symposium 49, 587609.Google Scholar
Watt, S.F., Pyle, D.M., Mather, T.A., Martin, R.S., Matthews, N.E., 2009. Fallout and distribution of volcanic ash over Argentina following the May 2008 explosive eruption of Chaitén, Chile. Journal of Geophysical Research 114, B04207.Google Scholar
Wetzel, G., 2001. Limnology: Lake and River Ecosystems. Elsevier Academic Press, San Diego, CA.Google Scholar
Whitlock, C., Bianchi, M.M., Bartlein, P.J., Markgraf, V., Marlon, J., Walsh, M., McCoy, N., 2006. Postglacial vegetation, climate, and fire history along the east side of the Andes (lat 41-42.5°S), Argentina. Quaternary Research 66, 187201.Google Scholar
Witt, M.L.I., Mather, T.A., Pyle, D.M., Aiuppa, A., Bagnato, E., Tsanev, V.I., 2008. Mercury and halogen emissions from Masaya and telica volcanoes. Nicaragua. Journal of Geophysical Research: Solid Earth 113, B06203.Google Scholar
Ziegler, M., Jilbert, T., de Lange, G.J., Lourens, L.J., Reichart, G.J., 2008. Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores. Geochemistry, Geophysics, Geosystems 9, 16.Google Scholar
Supplementary material: File

Ribeiro Guevara et al. supplementary material

Tables S1-S7

Download Ribeiro Guevara et al. supplementary material(File)
File 77.5 KB