Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T09:29:59.194Z Has data issue: false hasContentIssue false

Body Size Variability and a Sangamonian Extinction Model for Amblyrhiza,a West Indian Megafaunal Rodent

Published online by Cambridge University Press:  20 January 2017

Donald A. McFarlane
Affiliation:
Joint Science Department, The Claremont Colleges, Claremont, California, 91711-5911,
Ross D.E. MacPhee
Affiliation:
Department of Mammalogy, American Museum of Natural History, New York, New York, 10024,
Derek C. Ford
Affiliation:
Departments of Geography and Geology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada

Abstract

The megafaunal rodent Amblyrhiza inundatafrom Anguilla and St. Martin is often cited in lists of late Quaternary human-induced extinctions, but its date of disappearance has never been established. Here, we present a suite of uranium-series disequilibrium dates from three independent Amblyrhizasites in Anguilla, all of which cluster in marine isotope Stage 5. Thus, there is no indication that Amblyrhizasurvived into the late Holocene, when islands of the northern Lesser Antilles were first invaded by humans. We argue that the most probable cause of the extinction of Amblyrhizawas a failure of island populations to adjust to catastrophic reductions in available range which accompanied last interglacial sea-level maxima. We support this argument with quantitative extinction probability estimates drawn from persistence time models. Amblyrhizaexhibits body-size hypervariability, a common but underemphasized feature of island megafaunal species. We argue that hypervariability is a record of morphological response to oscillating natural selection, which in turn is driven by asymmetries in the relationship of population size, body mass, and persistence time. The fate of Amblyrhizastands in marked contrast to that of most other West Indian land mammals, whose losses increasingly appear to have been anthropogenically mediated.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, H. E (1926). Unpublished manuscript field notes in the Department of Mammalogy.Google Scholar
Anderson, E. (1984). Who's who in the Pleistocene: a mammalian bestiary. Quaternary Extinctions: A Prehistoric Revolution Univ. of Arizona, Tucson.p. 40–89Google Scholar
Belovsky, G.E. (1987). Extinction models and mammalian persistence.Soulé, M.E. Viable Populations for Conservation Cambridge Univ. Press, Cambridge.3557.CrossRefGoogle Scholar
Bender, M., Sowers, T., Dickson, M.L., Orchardo, J., Grootes, P., Mayewski, P.A., and Meese, D.A. (1994). Climate correlations between Greenland and Antarctica during the past 100,000 years. Nature 372, 663666.CrossRefGoogle Scholar
Biknevicius, A.R., McFarlane, D.A., and MacPhee, R.D.E. (1993). Body size in Amblyrhiza inundata . American Museum Novitates 3079, 125.Google Scholar
Boag, P.T., and Grant, P.R. (1981). Intense natural selection in a population of Darwin's finches (Geospizinae) in the Galapagos. Science 214, 8285.CrossRefGoogle Scholar
Cole, F.R., Reeder, D.M., and Wilson, D.E. (1994). A synopsis of distribution patterns and the conservation of mammal species. Journal of Mammalogy 75, 266276.CrossRefGoogle Scholar
Cope, E.D. (1868). Exhibition of bones and teeth of a large rodent from the cave deposits of Anguilla, one of the Virgin West India Islands. Proceedings of the Academy of Natural Sciences of Philadelphia p. 313Google Scholar
Cope, E.D. (1883). On the contents of a bone cave in the island of Anguilla (West Indies). Smithsonian Contributions to Knowledge 25, 130.Google Scholar
Field, M.H., Huntley, B., and Müller, H. (1994). Eemian climate fluctuations observed in a European pollen record. Nature 371, 779783.CrossRefGoogle Scholar
Flemming, C., and MacPhee, R.D.E. (1996). Caribbean giants: relationships of Antillean heptaxodontids (Rodentia: Caviomorpha). Journal of Vertebrate Paleontology 16, 34A Google Scholar
Gallup, C.D., Edwards, R.L., and Johnson, R.G. (1994). The timing of high sea levels over the past 200,000 years. Science 263, 796799.CrossRefGoogle ScholarPubMed
Gibbs, H.L., and Grant, P.R. (1987). Oscillating selection in Darwin's finches. Nature 327, 511513.CrossRefGoogle Scholar
Goodman, D. (1987). The demography of chance extinction.Soulé, M.E. Viable Populations for Conservation Cambridge Univ. Press, Cambridge.1134.CrossRefGoogle Scholar
Goodwin, G. G (1926). Unpublished manuscript field notes in the Department of Mammalogy.Google Scholar
Nature 364, (1993). 203207.CrossRefGoogle Scholar
Harestad, A.S., and Bunnell, F.L. (1979). Home range and body weight—a reevaluation. Ecology 60, 389402.CrossRefGoogle Scholar
Hearty, P.J., and Neumann, A.C. (1995). Evidence of rapid sea-level changes at the end of substage 5e in the Bahamas. Eos 76, 174 Google Scholar
Hillaire-Marcel, C., Gariepy, C., Ghaleb, B., Goy, J-L., Zazo, C., and Barcelo, J.C. (1996). U-series measurements in Tyrrhenian deposits from Mallorca-further evidence for two last-Interglacial high sea levels in the Balearic Islands. Quaternary Science Reviews 15, 5362.CrossRefGoogle Scholar
Hummelinck, P. W (1979). Caves of the Netherlands Antilles. Foundation for Scientific Research in Surinam and the Netherlands AntillesGoogle Scholar
Iturralde-Vinent, M. A., MacPhee, R. D. E. Paleogeography of the Caribbean: Implications for historical biogeography. Bulletin of the American Museum of Natural HistoryGoogle Scholar
(1996). 1996 IUCN Red List of Threatened Animals. IUCN, Gland.Google Scholar
Ivanovitch, M., and Harmon, R.S. (1992). Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences. Clarendon Press, Oxford.Google Scholar
Johnsen, S.J., Clausen, H.P., Dansgaard, W., Gundestrup, N.S., Hammer, C.V., and Tauber, H. (1995). The Eem stable isotope record along the GRIP ice core and its interpretation. Quaternary Research 43, 117124.CrossRefGoogle Scholar
Lauritzen, S.-E. (1995). High resolution paleotemperature record for the last interglacial based on Norwegian speleothems. Quaternary Research 43, 133146.CrossRefGoogle Scholar
Lister, A.M. (1989). Rapid dwarfing of red deer on Jersey in the last Interglacial. Nature 342, 539542.CrossRefGoogle Scholar
Lister, A.M. (1995). Sea-levels and the evolution of island endemics: the dwarf red deer of Jersey.Preece, R.C. Island Britain: A Quaternary Perspective The Geological Society, London.151172.Google Scholar
MacPhee, R.D.E. (1984). Quaternary mammal localities and heptaxodontid rodents of Jamaica. American Museum Novitates 2803, 134.Google Scholar
MacPhee, R.D.E. (1996). The Greater Antillean monkeys. Revista de Ciència de l'Institut d'Estudis Baleàrics 18, 1332.Google Scholar
MacPhee, R.D.E., Ford, D.C., and McFarlane, D.A. (1989). Pre-Wisconsinan mammals from Jamaica and models of late Quaternary extinction in the Greater Antilles. Quaternary Research 31, 94106.CrossRefGoogle Scholar
Martin, P.S. (1984). Prehistoric overkill: The global model.Martin, P.S., Klein, R.G. Quaternary Extinctions: A Prehistoric Revolution Univ. of Arizona, Tucson.354403.Google Scholar
McFarlane, D.A., and MacPhee, R.D.E. (1989). Amblyrhiza . Cave Science 16, 3134.Google Scholar
McFarlane, D.A., and MacPhee, R.D.E. (1993). Amblyrhiza . Boletı́n de la Sociedad Venezolana de Espeleogı́a 27, 3338.Google Scholar
McFarlane, D. A., Lundberg, J., Flemming, C., MacPhee, R. D. E., Lauritzen, S.-E. A second pre-Wisconsinan locality for the extinct Jamaican rodent Clidomys . Caribbean Journal of ScienceGoogle Scholar
McKinney, C.R. (1995). Uranium series dating of tooth enamel and wood: absolute chronometers for Holocene and late Pleistocene archaeology sites. Geological Society of America, Annual Meeting, p. 415Google Scholar
Neumann, A.C., and Hearty, P.J. (1996). Rapid sea-level changes at the close of the last interglacial (substage 5e) recorded in Bahamian island geology. Geology 24, 775778.2.3.CO;2>CrossRefGoogle Scholar
Pascual, R., Vucetich, M. G., and Scillato-Yane, G. J (1990). Extinct and Recent South American and Caribbean Megalonychidae edentates and Hystricognathi rodents: outstanding examples of isolation. In, Biogeographical Aspects of Insularity, Azzaroli , A., Atti Convegni Linzei, 85, 627, 640.Google Scholar
Peters, R.H. (1983). The Ecological Implications of Body Size. Cambridge Univ. Press, Cambridge.CrossRefGoogle Scholar
Peters, R.H., and Raelson, J.V. (1984). Relations between individual size and mammalian population density. American Naturalist 124, 498517.CrossRefGoogle Scholar
Ray, C. (1964). The taxonomic status of Heptaxodon Elasmodontomys Amblyrhiza . Bulletin of the Museum Comparative Zoology 131, 107127.Google Scholar
Richards, D.A., Smart, P.L., and Edwards, R.L. (1994). Sea levels for the last glacial period based on238 234 230 . Nature 367, 357360.CrossRefGoogle Scholar
Roth, V.L. (1990). Insular dwarf elephants: a case study in body mass estimation and ecological inference.Damuth, J., MacFadden, B.J. Body Size in Mammalian Paleobiology: Estimation and Biological Implications Cambridge Univ. Press, Cambridge.151179.Google Scholar
Roth, V.L. (1992). Inferences from allometry and fossils: dwarfing of elephants on islands.Futuyama, D., Antonovics, J. Evolutionary Biology Univ. of Oxford, Oxford.259288.Google Scholar
Schreuder, A. (1933). Skull remains of Amblyrhiza . Tijdschrift der Nederlandse Dierkundige Vereeniging 3, 242266.Google Scholar
Seidenkrantz, M.-S., Bornmalm, L., Johnsen, S.J., Knudsen, K.L., Kuijpers, A., Lauritzen, S.-E., Leroy, S.A.G., Mergeai, I., Schweger, C., and van Vliet-Lanoe, B. (1996). Two-step deglaciation at the oxygen isotope stage 6/5e transition: The Zeifen-Kattegat climate oscillation. Quaternary Science Reviews 15, 6375.CrossRefGoogle Scholar
Sondaar, P.Y. (1977). Insularity and its effect on mammal evolution.Hecht, M.K., Goody, P.C., Hecht, B.M. Major Patterns in Vertebrate Evolution Plenum Press, New York.671707.CrossRefGoogle Scholar
Soulé, M.E. (1987). Viable Populations for Conservation. Cambridge Univ. Press, Cambridge.CrossRefGoogle Scholar
Spencer, J.W.W. (1901). On the geology and physical development of Anguilla, St. Martin, St. Barthelemy, and Sombrero. Quarterly Journal of the Geological Society of London 57, 520533.CrossRefGoogle Scholar
Szabo, B.J., Ludwig, K.R., Muhs, D.R., and Simmons, K.R. (1994). Thorium-230 ages of corals and duration of the last interglacial sea-level high stand on Oahu, Hawaii. Science 266, 9396.CrossRefGoogle ScholarPubMed
Vartanyan, S.L., Garutt, V.E., and Sher, A.V. (1993). Holocene dwarf mammoths from Wrangel Island in the Siberian Arctic. Nature 362, 337340.CrossRefGoogle ScholarPubMed
de Vos, J. (1979). The endemic Pleistocene deer of Crete. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, series B 82, 5990.Google Scholar
Wadge, G. (1994). The Lesser Antilles.Donovan, S.K., Jackson, T.A. Caribbean Geology: An Introduction Univ. of the West Indies Press, Kingston.Google Scholar
Woods, C.A. (1989). The biogeography of West Indian rodents.Woods, C.A. Biogeography of the West Indies: Past, Present and Future Sandhill Crane Press, Gainesville.741798.Google Scholar