Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T11:57:18.390Z Has data issue: false hasContentIssue false

A biomarker record of temperature and phytoplankton community structure in the Okinawa Trough since the last glacial maximum

Published online by Cambridge University Press:  20 June 2017

Jiaping Ruan
Affiliation:
Hadal Science and Technology Research Center (HAST), College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China MOE Key Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Yunping Xu*
Affiliation:
Hadal Science and Technology Research Center (HAST), College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China MOE Key Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Su Ding
Affiliation:
MOE Key Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Yinghui Wang
Affiliation:
MOE Key Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Xinyu Zhang
Affiliation:
MOE Key Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
*
*Corresponding author at: Hadal Science and Technology Research Center (HAST), College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China E-mail address: [email protected] (Y. Xu)

Abstract

A variety of biomarkers were examined from Ocean Drilling Program Core 1202B to reconstruct temperature and phytoplankton community structures in the southern Okinawa Trough since 20 ka. Two molecular temperature proxies ( $${\rm U}_{{37}}^{{{\rm K}\prime}} $$ and TEX86) show 5°C to ~6°C warming during the glacial-interglacial transition. Prior to the Holocene, the $${\rm U}_{{37}}^{{{\rm K}\prime}} $$ -derived temperature was generally 1°C to 4°C higher than TEX86-derived temperature. This difference, however, was reduced to <1°C in the Holocene. Correspondingly, the phytoplankton biomarkers (e.g., C37:2 alkenone, brassicasterol, C30 1,15 diol, and dinosterol) indicate a shift of planktonic community structures, with coccolithophorids becoming more abundant in the Holocene at the expense of diatoms/dinoflagellates. This shift is related to the variability of nutrients, temperature, and salinity in the Okinawa Trough, likely controlled by the sea level and the intensity of the Kuroshio Current. The phytoplankton community change may have had profound implications for atmospheric CO2 fluctuations during glacial-interglacial cycles since diatoms and dinoflagellates have a higher efficiency of the biological pump than coccolithophorids.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bard, E., 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3, 635645.CrossRefGoogle Scholar
Blumenberg, M., Seifert, R., Kasten, S., Bahlmann, E., Michaelis, W., 2009. Euphotic zone bacterioplankton sources major sedimentary bacteriohopanepolyols in the Holocene Black Sea. Geochimica et Cosmochimica Acta 73, 750766.CrossRefGoogle Scholar
Boon, J.J., Rijpstra, W.I.C., De Lange, F., De Leeuw, J.W., Yoshioka, M., Shimizu, Y., 1979. Black Sea sterol—a molecular fossil for dinoflagellate blooms. Nature 277, 125127.CrossRefGoogle Scholar
Brassell, S.C., Eglinton, G., Marlowe, I.T., Pflaumann, U., Sarnthein, M., 1986. Molecular stratigraphy: a new tool for climatic assessment. Nature 320, 129133.CrossRefGoogle Scholar
Bukry, D., King, S.A., Horn, M.K., Manheim, F.T., 1970. Geological significance of coccoliths in fine-grained carbonate bands of postglacial Black Sea sediments. Nature 226, 156158.CrossRefGoogle ScholarPubMed
Calvo, E., Pelejero, C., Logan, G.A., De Deckker, P., 2004. Dust-induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles. Paleoceanography 19, http://dx.doi.org/10.1029/2003PA000992.CrossRefGoogle Scholar
Castañeda, I.S., Schefuß, E., Pätzold, J., Sinninghe Damsté, J.S., Weldeab, S., Schouten, S., 2010. Millennial-scale sea surface temperature changes in the eastern Mediterranean (Nile River Delta region) over the last 27,000 years. Paleoceanography 25, PA1208. http://dx.doi.org/10.1029/2009PA001740.CrossRefGoogle Scholar
Chen, C., 1996. The Kuroshio intermediate water is the major source of nutrients on the East China Sea continental shelf. Oceanologica Acta 19, 523527.Google Scholar
Chen, Y.L.L., Chen, H.Y., Chung, C.W., 2007. Seasonal variability of coccolithophore abundance and assemblage in the northern South China Sea. Deep-Sea Research Part II: Topical Studies in Oceanography 54, 16171633.Google Scholar
De La Rocha, C.L., Passow, U., 2007. Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep Sea Research Part II: Topical Studies in Oceanography 54, 639658.CrossRefGoogle Scholar
Diekmann, B., Hofmann, J., Henrich, R.I., Futterer, D.K., Rohl, U., Wei, K.Y., 2008. Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary. Marine Geology 255, 8395.CrossRefGoogle Scholar
Falkowski, P.G., Oliver, M.J., 2007. Mix and match: how climate selects phytoplankton. Nature Reviews Microbiology 5, 813819.CrossRefGoogle ScholarPubMed
Giraudeau, J., 1992. Distribution of recent nannofossils beneath the Benguela system: southwest African continental margin. Marine Geology 108, 219237.CrossRefGoogle Scholar
Harrison, K.G., 2000. Role of increased marine silica input on paleo-pCO2 levels. Paleoceanography 15, 292298.Google Scholar
He, J., Zhao, M., Wang, P., Li, L., Li, Q., 2013. Changes in phytoplankton productivity and community structure in the northern South China Sea during the past 260 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 392, 312323.Google Scholar
Hideshima, S., Matsumoto, E., Abe, O., Kitagawa, H., 2001. Northwest Pacific marine reservoir correction estimated from annually banded coral from Ishigaki Island, southern Japan. Radiocarbon 43, 473476.CrossRefGoogle Scholar
Honjo, S., 1976. Coccoliths: Production, transportation and sedimentation. Marine Micropaleontology 1, 6579.CrossRefGoogle Scholar
Honjo, S., 1982. Seasonality and interaction of biogenic and lithogenic particulate flux at the panama basin. Science 218, 883884.CrossRefGoogle ScholarPubMed
Hopmans, E.C., Weijers, J.W.H., Schefuss, E., Herfort, L., Sinninghe Damsté, J.S., Schouten, S., 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth and Planetary Science Letters 224, 107116.CrossRefGoogle Scholar
Huguet, C., Schimmelmann, A., Thunell, R., Lourens, L.J., Sinninghe Damsté, J.S., Schouten, S., 2007. A study of the TEX86 paleothermometer in the water column and sediments of the Santa Barbara Basin, California. Paleoceanography 22, PA3203. http://dx.doi.org/10.1029/2006pa001310.CrossRefGoogle Scholar
Ijiri, A., Wang, L.J., Oba, T., Kawahata, H., Huang, C.Y., Huang, C.Y., 2005. Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 219, 239261.CrossRefGoogle Scholar
Jia, G.D., Zhang, J., Chen, J.F., Peng, P.A., Zhang, C.L.L., 2012. Archaeal tetraether lipids record subsurface water temperature in the South China Sea. Organic Geochemistry 50, 6877.CrossRefGoogle Scholar
Jian, Z.M., Wang, P.X., Saito, Y., Wang, J.L., Pflaumann, U., Oba, T., Cheng, X.R., 2000. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean. Earth and Planetary Science Letters 184, 305319.CrossRefGoogle Scholar
Kao, S.J., Wu, C.R., Hsin, Y.C., Dai, M., 2006. Effects of sea level change on the upstream Kuroshio Current through the Okinawa Trough. Geophysical Research Letters 33. http://dx.doi.org/10.1029/2006GL026822.Google Scholar
Karner, M.B., DeLong, E.F., Karl, D.M., 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507510.CrossRefGoogle ScholarPubMed
Kawahata, H., Ohshima, H., 2002. Small latitudinal shift in the Kuroshio Extension (Central Pacific) during glacial times: evidence from pollen transport. Quaternary Science Reviews 21, 17051717.CrossRefGoogle Scholar
Kim, J.H., Romero, O.E., Lohmann, G., Donner, B., Laepple, T., Haam, E., Sinninghe Damsté, J.S., 2012. Pronounced subsurface cooling of North Atlantic waters off Northwest Africa during Dansgaard–Oeschger interstadials. Earth and Planetary Science Letters 339–340, 95102.CrossRefGoogle Scholar
Kim, J.H., Schouten, S., Hopmans, E.C., Donner, B., Sinninghe Damsté, J.S., 2008. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochimica et Cosmochimica Acta 72, 11541173.CrossRefGoogle Scholar
Kim, J.H., Van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koç, N., Hopmans, E.C., Sinninghe Damsté, J.S., 2010. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions. Geochimica et Cosmochimica Acta 74, 46394654.CrossRefGoogle Scholar
Lee, S.Y., Huh, C.A., Su, C.C., You, C.F., 2004. Sedimentation in the Southern Okinawa Trough: enhanced particle scavenging and teleconnection between the Equatorial Pacific and western Pacific margins. Deep-Sea Research Part I: Oceanographic Research Papers 51, 17691780.Google Scholar
Li, C.S., Jiang, B., Li, A.C., Li, T.G., Jiang, F.Q., 2009. Sedimentation rates and provenance analysis in the Southwestern Okinawa Trough since the mid-Holocene. Chinese Science Bulletin 54, 12341242.CrossRefGoogle Scholar
Li, D., Zhao, M., Tian, J., Li, L., 2013. Comparison and implication of TEX86 and UK′37 temperature records over the last 356 kyr of ODP Site 1147 from the northern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 376, 213223.Google Scholar
Longo, W.M., Dillon, J.T., Tarozo, R., Salacup, J.M., Huang, Y., 2013. Unprecedented separation of long chain alkenones from gas chromatography with a poly (trifluoropropylmethylsiloxane) stationary phase. Organic Geochemistry 65, 94102.CrossRefGoogle Scholar
Lopes dos Santos, R.A., Spooner, M.I., Barrows, T.T., De Deckker, P., Sinninghe Damsté, J.S., Schouten, S., 2013. Comparison of organic (UK'37, TEXH86, LDI) and faunal proxies (foraminiferal assemblages) for reconstruction of late Quaternary sea surface temperature variability from offshore southeastern Australia. Paleoceanography 28, 377387.CrossRefGoogle Scholar
Maher, B.A., Prospero, J.M., Mackie, D., Gaiero, D., Hesse, P.P., Balkanski, Y., 2010. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Science Reviews 99, 6197.CrossRefGoogle Scholar
Marlowe, I.T., Green, J.C., Neal, A.C., Brassell, S.C., Eglinton, G., Course, P.A., 1984. Long chain (n-C37–C39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance. British Phycological Journal 19, 203216.CrossRefGoogle Scholar
McClymont, E.L., Ganeshram, R.S., Pichevin, L.E., Talbot, H.M., van Dongen, B.E., Thunell, R.C., Haywood, A.M., Singarayer, J.S., Valdes, P.J., 2012. Sea-surface temperature records of Termination 1 in the Gulf of California: Challenges for seasonal and interannual analogues of tropical Pacific climate change. Paleoceanography 27, PA2202. http://dx.doi.org/10.1029/2011PA002226.CrossRefGoogle Scholar
Meyers, P.A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry 27, 213250.CrossRefGoogle Scholar
Muller, P.J., Kirst, G., Ruhland, G., von Storch, I., Rosell-Mele, A., 1998. Calibration of the alkenone paleotemperature index UK'37 based on core-tops from the eastern South Atlantic and the global ocean (60oN-60oS). Geochimica et Cosmochimica Acta 62, 17571772.CrossRefGoogle Scholar
Pelejero, C., Grimalt, J.O., Heilig, S., Kienast, M., Wang, L., 1999. High-resolution UK37 temperature reconstructions in the South China Sea over the past 220 kyr. Paleoceanography 14, 224231.CrossRefGoogle Scholar
Peltier, W.R., Fairbanks, R.G., 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, 33223337.CrossRefGoogle Scholar
Prahl, F.G., Wakeham, S.G., 1987. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330, 367369.CrossRefGoogle Scholar
Ruan, J., Xu, Y., Ding, S., Wang, Y., Zhang, X., 2015. A high resolution record of sea surface temperature in southern Okinawa Trough for the past 15,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 426, 209215.CrossRefGoogle Scholar
Salisbury, M.H., Shinohara, M., Richter, C., 2002. Proceedings of the Ocean Drilling Program: Initial Reports, Vol. 195. Ocean Drilling Program, College Station, TX. http://dx.doi.org/10.2973/odp.proc.ir.195.2002.CrossRefGoogle Scholar
Schouten, S., Hopmans, E.C., Schefuss, E., Sinninghe Damsté, J.S., 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth and Planetary Science Letters 204, 265274.CrossRefGoogle Scholar
Schouten, S., Hopmans, E.C., Sinninghe Damsté, J.S., 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Organic Geochemistry 54, 1961.CrossRefGoogle Scholar
Schubert, C.J., Villanueva, J., Calvert, S.E., Cowie, G.L., von Rad, U., Schulz, H., Berner, U., Erlenkeuser, H., 1998. Stable phytoplankton community structure in the Arabian Sea over the past 200,000 years. Nature 394, 563566.CrossRefGoogle Scholar
Seki, O., Ikehara, M., Kawamura, K., Nakatsuka, T., Ohnishi, K., Wakatsuchi, M., Narita, H., Sakamoto, T., 2004. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr. Paleoceanography 19, PA1016. http://dx.doi.org/ 10.1029/2002PA000808.CrossRefGoogle Scholar
Seki, O., Schmidt, D.N., Schouten, S., Hopmans, E.C., Sinninghe Damsté, J.S., Pancost, R.D., 2012. Paleoceanographic changes in the Eastern Equatorial Pacific over the last 10 Myr. Paleoceanography 27, PA3224. http://dx.doi.org/10.1029/2011PA002158.CrossRefGoogle Scholar
Shintani, T., Yamamoto, M., Chen, M.-T., 2011. Paleoenvironmental changes in the northern South China Sea over the past 28,000 years: a study of TEX86-derived sea surface temperatures and terrestrial biomarkers. Journal of Asian Earth Sciences 40, 12211229.CrossRefGoogle Scholar
Sinninghe Damsté, J.S., Schouten, S., Hopmans, E.C., van Duin, A.C.T., Geenevasen, J.A.J., 2002. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. Journal of Lipid Research 43, 16411651.CrossRefGoogle Scholar
Smetacek, V., 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Marine Biology 84, 239251.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Van der Plicht, J., Spurk, M., 1998. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40, 10411083.CrossRefGoogle Scholar
Sun, Y.B., Oppo, D.W., Xiang, R., Liu, W.G., Gao, S., 2005. Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate. Paleoceanography 20, 9, doi: Pa400510.1029/2004pa001061 CrossRefGoogle Scholar
Tada, R., Irino, T., Koizumi, I., 1999. Land-ocean linkages over orbital and millennial timescales recorded in late Quaternary sediments of the Japan Sea. Paleoceanography 14, 236247.CrossRefGoogle Scholar
Tierney, J.E., Tingley, M.P., 2015. A TEX86 surface sediment database and extended Bayesian calibration. Scientific Data 2, 150029. http://dx.doi.org/ 10.1038/sdata.2015.29.CrossRefGoogle ScholarPubMed
Ujiie, H., Hatakeyama, Y., Gu, X.X., Yamamoto, S., Ishiwatari, R., Maeda, L., 2001. Upward decrease of organic C/N ratios in the Okinawa Trough cores: proxy for tracing the post-glacial retreat of the continental shore line. Palaeogeography, Palaeoclimatology, Palaeoecology 165, 129140.CrossRefGoogle Scholar
Ujiie, H., Ujiie, Y., 1999. Late Quaternary course changes of the Kuroshio Current in the Ryukyu Arc region, northwestern Pacific Ocean. Marine Micropaleontology 37, 2340.CrossRefGoogle Scholar
Ujiie, Y., Ujiie, H., Taira, A., Nakamura, T., Oguri, K., 2003. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21,000 years: evidence from planktonic foraminifera. Marine Micropaleontology 49, 335364.CrossRefGoogle Scholar
van der Meer, M.T.J., Sangiorgi, F., Baas, M., Brinkhuis, H., Sinninghe Damsté, J.S., Schouten, S., 2008. Molecular isotopic and dinoflagellate evidence for Late Holocene freshening of the Black Sea. Earth and Planetary Science Letters 267, 426434.CrossRefGoogle Scholar
Volkman, J.K., 1986. A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry 9, 8399.Google Scholar
Volkman, J.K., Barrett, S.M., Blackburn, S.I., 1999. Eustigmatophyte microalgae are potential sources of C29 sterols, C22–C28 n-alcohols and C28–C32 n-alkyl diols in freshwater environments. Organic Geochemistry 30, 307318.CrossRefGoogle Scholar
Volkman, J.K., Barrett, S.M., Blackburn, S.I., Mansour, M.P., Sikes, E.L., Gelin, F., 1998. Microalgal biomarkers: a review of recent research developments. Organic Geochemistry 29, 11631179.CrossRefGoogle Scholar
Volkman, J.K., Barrerr, S.M., Blackburn, S.I., Sikes, E.L., 1995. Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate. Geochimica et Cosmochimica Acta 59, 513520.CrossRefGoogle Scholar
Volkman, J.K., Eglinton, G., Corner, E.D.S., Forsberg, T.E.V., 1980. Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi . Phytochemistry 19, 26192622.CrossRefGoogle Scholar
Wakeham, S.G., Peterson, M.L., Hedges, J.I., Lee, C., 2002. Lipid biomarker fluxes in the Arabian Sea, with a comparison to the equatorial Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 49, 22652301.CrossRefGoogle Scholar
Wang, J.L., Saito, Y., Oba, T., Jian, Z.M., Wang, P.X., 2001. High-resolution records of thermocline in the Okinawa Trough since about 10000 aBP. Science China Earth Sciences 44, 193200.CrossRefGoogle Scholar
Wei, K.Y., Mii, H.S., Huang, C.Y., 2005. Age model and oxygen isotope stratigraphy of site ODP1202 in the southern Okinawa Trough, northwestern pacific. Terrestrial Atmospheric and Oceanic Sciences 16, 117.CrossRefGoogle Scholar
Weijers, J.W.H., Schouten, S., Spaargaren, O.C., Sinninghe Damsté, J.S., 2006. Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index. Organic Geochemistry 37, 16801693.CrossRefGoogle Scholar
Werne, J.P., Hollander, D.J., Lyons, T.W., Peterson, L.C., 2000. Climate-induced variations in productivity and planktonic ecosystem structure from the Younger Dryas to Holocene in the Cariaco Basin, Venezuela. Paleoceanography 15, 1929.CrossRefGoogle Scholar
Wu, W., Zhao, L., Pei, Y., Ding, W., Yang, H., Xu, Y., 2013. Variability of tetraether lipids in Yellow River-dominated continental margin during the past eight decades: implications for organic matter sources and river channel shifts. Organic Geochemistry 60, 3339.CrossRefGoogle Scholar
Wu, W.C., Tan, W.B., Zhou, L.P., Yang, H., Xu, Y.P., 2012. Sea surface temperature variability in southern Okinawa Trough during last 2700 years. Geophysical Research Letters 39. http://dx.doi.org/10.1029/2012GL052749.CrossRefGoogle Scholar
Xiang, R., Sun, Y.B., Li, T.G., Oppo, D.W., Chen, M.H., Zheng, F., 2007. Paleoenvironmental change in the middle Okinawa Trough since the last deglaciation: Evidence from the sedimentation rate and planktonic foraminiferal record. Palaeogeography, Palaeoclimatology, Palaeoecology 243, 378393.CrossRefGoogle Scholar
Xing, L., Zhang, R.P., Liu, Y.G., Zhao, X.C., Liu, S.M., Shi, X.F., Zhao, M.X., 2011. Biomarker records of phytoplankton productivity and community structure changes in the Japan Sea over the last 166 kyr. Quaternary Science Reviews 30, 26662675.CrossRefGoogle Scholar
Xing, L., Zhao, M., Zhang, H., Liu, Y., Shi, X., 2008. Biomarker reconstruction of phytoplankton productivity and community structure changes in the middle Okinawa Trough during the last 15 ka. Chinese Science Bulletin 53, 25522559.CrossRefGoogle Scholar
Xu, Y., Holmes, C.W., Jaffé, R., 2007. Paleoenvironmental assessment of recent environmental changes in Florida Bay, USA: A biomarker based study. Estuarine, Coastal and Shelf Science 73, 201210.CrossRefGoogle Scholar
Yamamoto, M., Shimamoto, A., Fukuhara, T., Tanaka, Y., Ishizaka, J., 2012. Glycerol dialkyl glycerol tetraethers and TEX86 index in sinking particles in the western North Pacific. Organic Geochemistry 53, 5262.CrossRefGoogle Scholar
Yang, H., Ding, W., Wang, J., Jin, C., He, G., Qin, Y., Xie, S., 2012. Soil pH impact on microbial tetraether lipids and terrestrial input index (BIT) in China. Science China Earth Sciences 55, 236245.CrossRefGoogle Scholar
Zhao, J., Li, J., Cai, F., Wei, H., Hu, B., Dou, Y., Wang, L., Xiang, R., Cheng, H., Dong, L., Zhang, C.L., 2015. Sea surface temperature variation during the last deglaciation in the southern Okinawa Trough: Modulation of high latitude teleconnections and the Kuroshio Current. Progress in Oceanography 138, 238248.CrossRefGoogle Scholar
Zhao, J., Li, T., Li, J., Hu, B., 2012. Paleoproductivity variations in the southern Okinawa Trough since the middle Holocene: Calcareous nannofossil records. Chinese Science Bulletin 57, 39173922.CrossRefGoogle Scholar
Zhao, M., Li, D., Xing, L., 2009. Using archaea biomarker index TEX86 as a paleo-sea surface temperature proxy. [In Chinese with English abstract.]. Marine Geology and Quaternary Geology 29, 7584.Google Scholar
Zhao, M., Mercer, J.L., Eglinton, G., Higginson, M.J., Huang, C.-Y., 2006. Comparative molecular biomarker assessment of phytoplankton paleoproductivity for the last 160kyr off Cap Blanc, NW Africa. Organic Geochemistry 37, 7297.CrossRefGoogle Scholar
Zhao, M.X., Huang, C.Y., Wei, K.Y., 2005. A 28,000 year UK37 sea-surface temperature record of ODP Site 1202B, the southern Okinawa Trough. Terrestrial Atmospheric and Oceanic Sciences 16, 4556.CrossRefGoogle Scholar
Zhou, H., Li, T., Jia, G., Zhu, Z., Chi, B., Cao, Q., Sun, R., Peng, P.A, 2007. Sea surface temperature reconstruction for the middle Okinawa Trough during the last glacial-interglacial cycle using C37 unsaturated alkenones. Palaeogeography, Palaeoclimatology, Palaeoecology 246, 440453.CrossRefGoogle Scholar