Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T19:17:02.331Z Has data issue: false hasContentIssue false

Are burnt sediments reliable recorders of geomagnetic field strength?

Published online by Cambridge University Press:  20 January 2017

Manuel Calvo-Rathert*
Affiliation:
Departamento de Física, EPS, Universidad de Burgos, Av. de Cantabria, s/n, 09006 Burgos, Spain
Ángel Carrancho
Affiliation:
Departamento de Física, EPS, Universidad de Burgos, Av. de Cantabria, s/n, 09006 Burgos, Spain
Florian Stark
Affiliation:
Geomagnetism Laboratory, School of Environmental Sciences, University of Liverpool, UK
Juan José Villalaín
Affiliation:
Departamento de Física, EPS, Universidad de Burgos, Av. de Cantabria, s/n, 09006 Burgos, Spain
Mimi Hill
Affiliation:
Geomagnetism Laboratory, School of Environmental Sciences, University of Liverpool, UK
*
*Corresponding author. Fax: + 34 947 259349. E-mail address:[email protected] (M. Calvo-Rathert).

Abstract

This study tests if burnt soils and sediments can provide reliable records of geomagnetic field strength at the time of burning by carrying out an experiment to reproduce the prehistoric use of fire on a clayish soil substratum. Rock magnetic experiments showed that in the upper 0–1 cm of the central part of the burnt surface, remanence is a thermoremanent magnetization carried by single-domain magnetite and that samples are thermally stable. Fourteen specimens from that area were subjected to paleointensity experiments with the Coe method (1967). An intensity of 42.9±5.7 μT was estimated below 440°C, whereas at higher temperatures magneto-mineralogical alterations were observed. Corresponding successful microwave intensity determinations from two specimens gave a mean value of 47.6 μT. Both results are in reasonable agreement with the expected field value of 45.2 μT. Burnt soils of archeological fires thus have the potential to record accurately the paleofield strength and may be useful targets for archeointensity investigations. Coincident results obtained from two different paleointensity determination methods support this conclusion.

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellomo, R.V. 1993, A methodological approach for identifying archaeological evidence of fire resulting from human activities. Journal of Archaeological Science 20, 525553.CrossRefGoogle Scholar
Carrancho, A. 2010 Arqueomagnetismo y magnetismo de las rocas en registros de fuegos arqueológicos holocenos. . PhD Thesis. Universidad de Burgos, Spain. 282 pp.Google Scholar
Carrancho, A. Villalaìn, J.J. 2011, Different mechanisms of magnetization recorded in experimental fires: archaeomagnetic implications. Earth and Planetary Science Letters 312, 176187.CrossRefGoogle Scholar
Coe, R. 1967, Paleointensities of the Earth's magnetic field determined from Tertiary and Quaternary rocks. Journal of Geophysical Research 72, 32473262.CrossRefGoogle Scholar
Coe, R. Grommé, S. Mankinen, E.A. 1978, Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low. Journal of Geophysical Research 83, 17401756.CrossRefGoogle Scholar
Gallet, Y. Genevey, A. Le Goff, M. 2002, Three millennia of directional variation of the Earth's magnetic field in Western Europe as revealed by archeological artifacts. Physics of the Earth and Planetary Interiors 131, 8189.CrossRefGoogle Scholar
Gómez-Paccard, M. Chauvin, A. Lanos, P. Thiriot, J. 2008, New archeointensity data from Spain and the geomagnetic dipole moment in western Europe over the past 2000 years. Journal of Geophysical Research 113, B09103 10.1029/2008JB005582 CrossRefGoogle Scholar
Herries, A.I.R. 2009, New approaches for integrating palaeomagnetic and mineral magnetic methods to answer archaeological and geological questions on Stone Age sites. Fairbrain, A. O'Conner, S. Marwick, B. Terra Australis 28—New Directions in Archaeological Science. The Australian National University Press Canberra, Australia 235253Chapter 16.Google Scholar
IAGA, Working Group V-MOD, 2010, International geomagnetic reference field: the eleventh generation. Geophysical Journal International 183, 12161230 10.1111/j.1365-246X.2010.04804 Google Scholar
Kovacheva, M. 1997, Archaeomagnetic database from Bulgaria: the last 8000 years. Physics of the Earth and Planetary Interiors 102, 145151.CrossRefGoogle Scholar
Kovacheva, M. Jordanova, N. Karloukowski, V. 1998, Geomagnetic field variations as determined from Bulgarian archaeomagnetic data. Part II: the last 8000 years. Surveys in Geophysics 19, 431460.CrossRefGoogle Scholar
Kovacheva, M. Boyadziev, Y. Kostadinova, M. Jordavova, N. Donadini, F. 2009, Updated archeomagnetic data set of the past 8 millenia from the Sofia laboratory, Bulgaria. Geochemistry Geophysics Geosystems 10, Q05002 10.1029/ 2008GC002347 CrossRefGoogle Scholar
Leonhardt, R. Hufenbrecher, C. Heider, F. Soffel, H. 2000, High absolute paleointensity during a mid-Miocene excursion of the Earth's magnetic field. Earth and Planetary Science Letters 184, 141154.CrossRefGoogle Scholar
Leonhardt, R. Heunemann, C. Krása, D. 2004, Analyzing absolute paleointensity determinations: acceptance criteria and the software ThellierTool4.0. Geochemistry Geophysics Geosystems 5, no. 12 10.1029/2004GC000807 CrossRefGoogle Scholar
Levi, S. 1977, The effect of magnetite particle size in paleointensity determinations of the geomagnetic field. Physics of the Earth and Planetary Interiors 13, 245249.CrossRefGoogle Scholar
Linford, N.T. Canti, M.G. 2001, Geophysical evidence for fires in antiquity: preliminary resultsfrom an experimental study. Archaeological Prospection 8, 211225.CrossRefGoogle Scholar
Maki, D. Homburg, J.A. Brosowske, S.D. 2006, Thermally activated mineralogical transformations in archaeological hearths: inversion from maghemite (γFe2O3) phase to haematite (αFe2O3) form. Archaeological Prospection 13, 3 207227.CrossRefGoogle Scholar
McClean, R.G. Kean, W.F. 1993, Contributions of wood ash magnetism to archaeomagnetic properties of fire pits and hearths. Earth and Planetary Science Letters 119, 387394.CrossRefGoogle Scholar
Morinaga, H. Inokuchi, H. Yamashita, H. Ono, A. Inada, T. 1999, Magnetic detection of heated soils at Palaeolithic sites in Japan. Geoarchaeology 14, 5 377399.3.0.CO;2-S>CrossRefGoogle Scholar
Pike, C.R. Roberts, A.P. Verosub, K.L. 1999, Characterizing interactions in fine magnetic particle systems using first order reversal curves. Journal of Applied Physics 85, 66606667.CrossRefGoogle Scholar
Sakai, H. 1987, Paleomagnetic study of the Middle Paleolithic hearth at Douara Cave. Akazawa, T. Sakaguchi, Y. Paleolithic Site of Douara Cave and Paleogeography of Palmyra Basin in Siria. The University Museum, The University of Tokyo Bulletin No. 29 123131.Google Scholar
Suttie, N. Shaw, J. Hill, M. 2010, Direct demonstration of microwave demagnetization of a whole rock sample with minimal heating. Earth and Planetary Science Letters 292, 357362 10.1016/j.epsl.2010.02.002 CrossRefGoogle Scholar
Thellier, E. Thellier, O. 1959, Sur l'intensité du champ magnetique terrestre dans le passé historique et geologique. Annales Geophysicae 15, 285376.Google Scholar