Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T22:21:45.211Z Has data issue: false hasContentIssue false

Application of Transfer Functions to Indian Ocean Planktonic Foraminifera

Published online by Cambridge University Press:  20 January 2017

William Halsey Hutson*
Affiliation:
CLIMAP, Department of Geological Sciences, Brown University, Providence, Rhode Island 02912

Abstract

The distribution and abundance of planktonic Foraminifera from the Indian Ocean are used to illustrate geographic variations in faunal assemblages in the plankton and on the seabed caused by sedimentary and postdepositional processes and to analyze the effect of these variations on paleoecological reconstruction. Principal components analysis of these data describes the composition and distribution of faunal assemblages in plankton-tow samples, low-dissolution core-top samples, and high-dissolution core-top samples. Factor-comparison analysis describes the relationships among these three sets of assemblages: The species composition of low-dissolution faunal assemblages may be accurately described as a simple linear mixing of plankton assemblages. The geographical distributions of the faunal assemblages in the sediments, however, are often displaced equatorward of their counterparts in the plankton. Dissolution causes complex changes in the composition of faunal assemblages and produces an equatorward displacement of several high-dissolution assemblages relative to their counterparts in low-dissolution sediments. Three transfer functions, or equations, are derived using plankton, low-dissolution, and high-dissolution data. Numerical experiments indicate that transfer functions lose accuracy when applied to discordant data sets: The plankton transfer function often underestimates temperatures in core-top sediments, and the low-dissolution transfer function underestimates temperatures in high-dissolution sediments. These systematic differences in temperature estimates are illustrated by applying the three transfer functions to downcore samples representing conditions 18,000 years ago. Other experiments indicate that these distortions can be reduced by using larger size fractions and calibrating transfer functions with both low- and high-dissolution core-top samples.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

, A.W.H., 1977. An ecological, zoogeographic and taxonomic review of Recent Planktonic Foraminifera. Ramsay, A.T.S., Oceanic Micropaleontology. Academic Press, New York, 1 100.Google Scholar
, A.W.H., Hutson, W.H., é and Hutson, 1977. Ecology of planktonic Foraminifera and biogeographic patterns of life and fossil assemblages in the Indian Ocean. Micropaleontology. 23, 369 414.CrossRefGoogle Scholar
, A.W.H., Morse, J.W., Harrison, S.M., é et al., 1975. Progressive dissolution and ultrastructural breakdown of planktonic foraminifera. Sliter, W.92., , A.W.H., Berger, W.H., Dissolution of Deep-Sea Carbonates. Cushman Foundation for Foraminiferal Research, Special Publication No. 13, 27 55.Google Scholar
, A.W.H., Tolderlund, D.S., é and Tolderlund, 1971. Distribution and ecology of living planktonic Foraminifera in surface waters of the Atlantic and Indian Oceans. Funnel, B.M., Reidel, W.R., Micropaleontology of Oceans. Cambridge University Press, London, 105 149.Google Scholar
Belyaeva, N.93., 1964. Distribution of planktonic Foraminifera in the water and on the floor of the Indian Ocean. Trudy Institute Okeanology, Akademy Nauk SSSR. 68, 12 83 [in Russian].Google Scholar
Berger, W.H., 1971. Sedimentation of planktonic Foraminifera. Marine Geology. 11, 325 358.CrossRefGoogle Scholar
Berger, W.H., 1973. Deep-sea carbonates: Pleistocene dissolution cycles. Journal of Foraminiferal Research. 3, 187 195.CrossRefGoogle Scholar
Berger, W.H., Soutar, A., 1970. Preservation of planktonic shells in an anaerobic basin off California. Geological Society of America, Bulletin. 81, 275 282.CrossRefGoogle Scholar
Boltovskoy, E., 1971. Planktonic foraminiferal assemblages of the epipelagic zone and their thanatocoenoses. Funnel, B.M., Reidel, W.R., Micropaleontology of the Oceans. Cambridge University Press, London, 277 288.Google Scholar
1976 Climap The surface of the ice age earth. Science. 191, 1131 1137.Google Scholar
Cooley, W.W., Lohnes, P.R., 1962 Multivariate Procedures for the Behavioral Sciences. Wiley, New York, 1 211.Google Scholar
Ericson, D.B., 1959. Coiling direction of Globigerina pachyderma as a climatic index. Science. 130, 219 220.CrossRefGoogle ScholarPubMed
Hecht, A.D., 1973. A model for determining Pleistocene paleotemperatures from planktonic foraminiferal assemblages. Micropaleontology. 19, 68 77.CrossRefGoogle Scholar
Hutson, W.H., 1976. Ecology and paleoecology of Indian Ocean planktonic Foraminifera. Unpublished dissertation. Brown University, Providence, R.I. Google Scholar
Hutson, W.H., 1977. Variations in planktonic Foraminiferal assemblages along north-south transects in the Indian Ocean. Marine Micropaleontology. 2, 47 66.CrossRefGoogle Scholar
Hutson, W.H., Lott, L., 1972 Plankton-Sediment Relationships: A Quantitative Model and Its Application to Indian Ocean Planktonic Foraminifera. Geological Society of America Abstracts.Google Scholar
Imbrie, J., Kipp, N.G., 1971. A new micropaleontological method for paleoclimatology: Application to a Late Pleistocene Caribbean core. Turekian, K.K., The Late Cenozoic Glacial Ages. Yale University Press, New Haven, Conn, 71 181.Google Scholar
Imbrie, J., van Donk, J., Kipp, N.G., 1973. Paleoclimatic investigation of a Late Pleistocene Caribbean deep-sea core: Comparison of isotopic and faunal methods. Quaternary Research. 3, 10 38.CrossRefGoogle Scholar
Jones, J.I., 1964. Distribution of Living Planktonic Foraminifera of the West Indies and Adjacent Waters. Ph.D. Thesis. University of Wisconsin, 1 193.Google Scholar
Kellogg, T.B., 1975. Late Quaternary climatic changes in the Norwegian and Greenland Seas. Weller, G., Bowling, S.A., Climate of the Arctic. Geophysical Institute, University of Alaska, Fairbanks, Alaska, 3 36.Google Scholar
Kim, J.-O., Kohout, F.J., 1975. Multiple regression analysis: Subprogram regression. Nie, N.H., Hull, C.H., Jenkins, J.G., Steinbrenner, D.H., Bent, D.H., Statistical Package for the Social Sciences. McGraw-Hill, New York, 320 342.Google Scholar
Kipp, N.G., 1976. New transfer function for estimating past sea-surface conditions from sea-bed distributions of planktonic foraminiferal assemblages in the North Atlantic. Cline, R.M., Hays, J.D., Investigation of Late Ouaternary Paleooceanography and Paleoclimatology. Geological Society of America, , Memoir. 145.CrossRefGoogle Scholar
Klovan, J.E., Imbrie, J., 1971. An algorithm and Fortran IV program for large scale Q-mode factor analysis. Journal of the International Association of Mathematical Geology. 3, 61 77.CrossRefGoogle Scholar
Luz, B., 1973. Stratigraphic and paleoclimatologic analysis of Late Pleistocene tropical South Pacific Cores. Quaternary Research. 3, 56 72.CrossRefGoogle Scholar
Lynts, G.W., Judd, J.B., 1971. Late Pleistocene paleotemperatures at Tongue of the Ocean, Bahamas. Science. 171, 1143 1144.CrossRefGoogle ScholarPubMed
Parker, F.L., Berger, W.H., 1971. Faunal and solution patterns of planktonic Foraminifera in surface sediments of the South Pacific. Deep-Sea Research. 18, 73 107.Google Scholar
Parks, J.N., 1966. Cluster Analysis applied to multivariate geological problems. Journal of Geology. 74, 715 763.CrossRefGoogle Scholar
Phleger, F.B., Parker, F.L., Pierson, J.F., 1953. Sediment cores from the North Atlantic Ocean. Swedish Deep-Sea Expedition. 7, 1 122.Google Scholar
Ruddiman, W.F., Heezen, B.C., 1967. Differential solution of planktonic Foraminifera. Deep-Sea Research. 14, 801 808.Google Scholar
Ruddiman, W.F., Tolderlund, D.S., , A.W.H., 1970. Foraminiferal evidence of a modern warming of the North Atlantic. Deep-Sea Research. 17, 141 155.Google Scholar
Sachs, H.M., 1973. North Pacific Radiolarian assemblages and their relationship to oceanographic parameters. Quaternary Research. 3, 73 88.CrossRefGoogle Scholar
Sancetta, C.A., Imbrie, J., Kipp, N.G., Ruddiman, W.F., McIntyre, A., 1973. Climatic record in North Atlantic deep-sea core V23-82: Comparison of the last and present interglacials based on quantitative time series. Quaternary Research. 2, 363 367.CrossRefGoogle Scholar
Schott, G., 1935 Geographie des Indischen und Stillen Ozeans. Verlag von C. Boysen, Hamburg, 1 413 [in German].Google Scholar
Schott, W., 1935. Die Foraminiferen in dem aquatorialen Teil des Atlantischen Ozeans. Vissenschaftliche Ergebnisse der Deutschen Atlantischen Expedition auf dem Forschungs, und Vermessungschiff “Meteor”. 3, 43 134 [in German].Google Scholar
Sverdrup, R.U., Johnson, M.W., Fleming, R.H., 1942 The Oceans. Prentice Hall, New York, 1 1087.Google Scholar
Vincent, E., 1972. Oceanography and Late Quaternary Planktonic Foraminifera, Southwestern Indian Ocean. Ph.D. Thesis. University Southern California, Los Angeles, Calif, 1 353.Google Scholar
Wyrtki, K., 1971 Oceanographic Atlas of the International Indian Ocean Expedition. National Science Foundation, U.S. Government Printing Office, Washington, D.C, 1 531.Google Scholar
Zobel, B., 1973. Biostratigraphische Undersuchungen an Sedimenten des indisch-pakistanischen Kontinental-randes (Arabisches Meer). “Meteor” Forschungsergebnisse, Reihe C: Geologie und Geophysik. 12, 9 73 [in German].Google Scholar