Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T23:14:06.597Z Has data issue: false hasContentIssue false

Ancient Meteorite Finds and the Earth's Surface Environment

Published online by Cambridge University Press:  20 January 2017

Philip A. Bland
Affiliation:
Department of Earth and Planetary Sciences, Western Australian Museum, Francis Street, Perth, Western Australia, 6000, Australia
Alex W. R. Bevan
Affiliation:
Department of Earth and Planetary Sciences, Western Australian Museum, Francis Street, Perth, Western Australia, 6000, Australia
A. J. Tim Jull
Affiliation:
NSF Accelerator Facility for Radioisotope Analysis, University of Arizona, Tucson, Arizona, 85721

Abstract

The flux of meteorites to the Earth over the last 50,000 yr has remained approximately constant. Most meteorites that fall in temperate or tropical areas are destroyed on a time scale which is short compared to the rate of infall; however, in arid regions (both “hot” deserts and the “cold” desert of Antarctica) weathering is slower and accumulations of meteorites may occur. The initial composition for many meteorite groups is well known from modern falls, and terrestrial ages may be established from analyses of the abundance of cosmogenic radionuclides, providing an absolute chronology for recording terrestrial processes. As samples are falling constantly, and are distributed approximately evenly over the Earth, meteorites may thus be thought of as an appropriate “standard sample” for studying aspects of the terrestrial surface environment. Studies involving 14C and 36Cl terrestrial ages of meteorites, 57Fe Mössbauer spectroscopy (to quantify the degree of oxidation in samples), stable isotopes, and determination of halogen abundances are yielding information on the terrestrial history of meteorites: (i) terrestrial age and oxidation-frequency distributions for populations of samples allow the ages of surfaces to be estimated; (ii) differences in the weathering rate of samples between sites allows constraints to be imposed on the effect of climate on rock weathering rates; (iii) carbon isotopic compositions of generations of carbonate growth within meteorites allows, in some cases, temperatures of formation of carbonates to be estimated; (iv) structure in the oxidation–terrestrial age distribution for meteorites from some arid accumulation sites (specifically, the Nullarbor of Australia) appears to be linked to previous humid/arid cycles; (v) meteorite accumulations in Antarctica have been used to constrain aspects of the Quaternary evolution of the ice sheet, and terrestrial age and oxidation data have been used to constrain ice flow.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annexstad, J. O., (1985). Meteorite concentration mechanisms in Antarctica.. LPI Technical Report 86-01, pp. 2325..Google Scholar
Aylmer, D., Bonnano, V., Herzog, G.F., Weber, H., Klein, J., Middleton, R., (1988). Al and Be production in iron meteorites. Earth and Planetary Science Letters 88, 107.Google Scholar
Benbow, M.C., Hayball, A.J., (1992). Geological observations of Old Homestead Cave, Nullarbor Plain, Western Australia. Australian Caver 130, 36.Google Scholar
Benoit, P.H., Jull, A.J.T., McKeever, S.W.S., Sears, D.W.G., (1993). The natural thermoluminescence of meteorites VI: Carbon-14, thermoluminescence and the terrestrial ages of meteorites. Meteoritics 28, 196203.Google Scholar
Benoit, P. H, Cunningham, J. M, Bland, P. A, Berry, F. J, Pillinger, C. T., in press, Meteorite “pairing”: The recognition of the fragmentation of meteorite finds. Meteoritics and Planetary Science, 33, .Google Scholar
Bevan, A.W.R., (1992). Australian meteorites. Records of the Australian Museum, Supplement 15, 127.Google Scholar
Bevan, A.W.R., (1992). 1992 WAMET/EUROMET joint expedition to search for meteorites in the Nullarbor Region, Western Australia (abstract). Meteoritics 27, 202203.Google Scholar
Bland, P.A., Smith, T.B., Jull, A.J.T., Berry, F.J., Bevan, A.W.R., Cloudt, S., Pillinger, C.T., (1996). The flux of meteorites to the Earth over the last 50,000 years. Monthly Notices of the Royal Astronomical Society 283, 551565.Google Scholar
Bland, P.A., Berry, F.J., Smith, T.B., Skinner, S., Pillinger, C.T., (1996). Flux of meteorites to the Earth and weathering in hot desert ordinary chondrite finds. Geochimica et Cosmochimica Acta 60, 20532059.CrossRefGoogle Scholar
Bland, P.A., Kelley, S.P., Berry, F.J., Cadogan, J.M., Pillinger, C.T., (1997). Artificial weathering of the ordinary chondrite Allegan: Implications for the presence of Cl as a structural component in akaganéite. American Mineralogist 82, 11871197.Google Scholar
Bland, P.A., Conway, A., Smith, T.B., Berry, F.J., Pillinger, C.T., (1998). Calculating flux from meteorite decay rates: A discussion of problems encountered in deciphering a 105 to 106 year integrated meteorite flux at Allan Hills and a new approach to pairing. Grady, M.M., Hutchinson, R., McCall, G.J.H., Rothery, D.A., Meteorites: Flux with Time and Impact Effects Geological Society of London, 4358.Google Scholar
Bowler, J.M., Hope, G.S., Jennings, J.N., Singh, G., Walker, D., (1976). Late Quaternary climates of Australia and New Guinea. Quaternary Research 6, 359394.Google Scholar
Bowler, J.M., (1978). Glacial age aeolian events at high and low latitudes: A southern hemisphere perspective. Van Zinderen Bakker, E.M., Antarctic Glacial History and World Palaeoenvironments Balkema, Rotterdam.149172.Google Scholar
Butzer, K.W., Isaac, G.L., Richardson, J.L., Washbourn-Kamau, C., (1972). Radiocarbon dating of East African lake levels. Science 175, 10691076.Google Scholar
Casey, W.H., Westrich, H.R., (1992). Control of dissolution rates of orthosilicate minerals by divalent metal–oxygen bonds. Nature 355, 157159.Google Scholar
Casey, W.H., Banfield, J.F., Westrich, H.R., McLaughlin, L., (1993). What do dissolution experiments tell us about natural weathering. Chemical Geology 105, 115.CrossRefGoogle Scholar
Cassidy, W.A., (1983). The remarkably low surface density of meteorites at Allan Hills and implications in this for climate change. Oliver, R.L., James, P.R., Jago, J.B., Antarctic Earth Science Australian Academy of Science, Canberra.623625.Google Scholar
Cassidy, W.A., Harvey, R., Schutt, J., Delisle, G., Yanai, K., (1992). The meteorite collection sites of Antarctica. Meteoritics 27, 490525.Google Scholar
Chang, C.T., Wänke, H., (1969). Beryllium-10 in iron meteorites, their cosmic ray exposure and terrestrial ages. Millman, P.M., Meteorite Research Reidel, Dordrecht.397406.Google Scholar
Clayton, R.N., Mayeda, T.K., Goswami, J.N., Olsen, E.J., (1991). Oxygen isotope studies of ordinary chondrites. Geochimica et Cosmochimica Acta 55, 23172337.Google Scholar
Colman, S.M., Dethier, D.P., (1986). An overview of rates of chemical weathering. Colman, S.M., Dethier, D.P., Rates of Chemical Weathering of Rocks and Minerals Academic Press, New York.118.Google Scholar
Delisle, G., (1993). Antarktische meteorite und global change. Die Geowissenschaften 11, 5964.Google Scholar
Dodd, R.T., (1981). Meteorites—A petrologic–chemical synthesis. Cambridge University Press, Cambridge.Google Scholar
Dreibus, G., Wänke, H., Schultz, L., (1985). Mysterious iodine-overabundance in Antarctic meteorites (abstract). Workshop on Antarctic Meteorites p. 1113.Google Scholar
Drewry, D., (1983). The surface of the Antarctic ice sheet. Drewry, D., Antarctica: Glaciological and Geophysical Folio, Sheet 2 Scott Polar Research Institute, Cambridge.Google Scholar
Ebihara, M., Shinonaga, T., Nakahara, H., Kondoh, A., Honda, M., Miyamoto, M., Kojima, H., (1990). Depth-profiles of halogen abundance and integrated intensity of hydration band near 3 μm in ALH 77231. Antarctic L6 chondrite. Lunar and Planetary Institute Technical Report 90-01, pp. 3237..Google Scholar
Fireman, E.L., (1983). Carbon-14 ages of Allan Hills meteorites and ice. In Lunar and Planetary Science Conference XIV. p. 195196.Google Scholar
Franchi, I.A., Bland, P.A., Jull, A.J.T., Berry, F.J., Pillinger, C.T., (1996). An assessment of the meteorite recovery potential of SE Arabia from meteorite weathering patterns. Meteoritics 31, 4647.Google Scholar
Freundel, M., Schultz, L., Reedy, R.C., (1986). Terrestrial 81Kr–Kr ages of Antarctic meteorites. Geochimica et Cosmochimica Acta 50, 26632673.Google Scholar
Goede, A., Atkinson, T.C., Rowe, P.J., (1992). A giant Late Pleistocene halite speleothem from Webbs Cave, Nullarbor Plain, southeastern Western Australia. Helictite 30, 37.Google Scholar
Goede, A., Harmon, R.S., Atkinson, T.C., Rowe, P.J., (1990). Pleistocene climatic change in southern Australia and its effects on speleothem deposition in some Nullarbor caves. Journal of Quaternary Science 5, 2938.Google Scholar
Gooding, J.L., Jull, A.J.T., Cheng, S., Velbel, M.A., (1988). Mg-carbonate weathering products in Antarctic meteorites: Isotopic composition and origin of nesquehonite from LEW85320. Lunar and Planetary Science Conference XIX p. 397398.Google Scholar
Grady, M.M., Gibson, E.K., Wright, I.P., Pillinger, C.T., (1989). The formation of carbonate weathering products on the LEW 85320 ordinary chondrite: Evidence from carbon and oxygen stable isotope compositions and implications for carbonate in SNC meteorites. Meteoritics 24, 17.Google Scholar
Grady, M.M., Wright, I.P., Pillinger, C.T., (1989). A preliminary investigation into the nature of carbonaceous material in ordinary chondrites. Meteoritics 24, 147154.CrossRefGoogle Scholar
Halliday, I., Griffin, A.A., (1982). A study of the relative rates of meteorite falls on the Earth's surface. Meteoritics 17, 3146.Google Scholar
Halliday, I., Blackwell, A.T., Griffin, A.A., (1984). The frequency of meteorite falls on the Earth. Science 223, 14051407.Google Scholar
Halliday, I., Blackwell, A.T., Griffin, A.A., (1989). The flux of meteorites on the Earth's surface. Meteoritics 24, 173178.Google Scholar
Heumann, K.G., Gall, M., Weiss, H., (1987). Geochemical investigations to explain iodine-overabundances in Antarctic meteorites. Geochimica et Cosmochimica Acta 51, 25412547.Google Scholar
Honda, M., Arnold, J.R., (1964). Effects of cosmic rays on meteorites. Science 143, 203212.Google Scholar
Hughes, D.W., (1981). Meteorite falls and finds: Some statistics. Meteoritics 16, 269281.Google Scholar
Jarosewich, E., (1990). Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics 25, 323337.Google Scholar
Jull, A. J. T., Bevan, A. W. R., Cielaszyk, E., Donahue, D. J., (1995). 14C terrestrial ages and weathering of meteorites from the Nullarbor Region, Western Australia.. Lunar and Planetary Institute Technical Report 95-02, pp. 3738..Google Scholar
Jull, A.J.T., Cheng, S., Gooding, J.L., Velbel, M.A., (1988). Rapid growth of magnesium-carbonate weathering products in a stony meteorite from Antarctica. Science 242, 417419.Google Scholar
Jull, A.J.T., Donahue, D.J., Cielaszyk, E., Wlotzka, F., (1993). Carbon-14 terrestrial ages and weathering of 27 meteorites from the southern high plains and adjacent areas (USA). Meteoritics 28, 188195.Google Scholar
Jull, A.J.T., Donahue, D.J., Linick, T.W., (1989). Carbon-14 activities in recently fallen meteorites and Antarctic meteorites. Geochimica et Cosmochimica Acta 53, 20952100.Google Scholar
Jull, A.J.T., Wlotzka, F., Palme, H., Donahue, D.J., (1990). Distribution of terrestrial age and petrologic type of meteorites from western Libya. Geochimica et Cosmochimica Acta 54, 28952898.Google Scholar
Jull, A.J.T., Donahue, D.J., Reedy, R.C., Masarik, K.J., (1994). A carbon-14 depth profile in the L5 chondrite Knyahinya. Meteoritics 29, 649651.Google Scholar
Jull, A.J.T., Cloudt, S., Cielaszyk, E., (1998). 14C terrestrial ages of meteorites from Victoria Land, Antarctica, and the infall rates of meteorites. Grady, M.M., Hutchinson, R., McCall, G.J.H., Rothery, D.A., Meteorites: Flux with Time and Impact Effects Geological Society of London, 7591.Google Scholar
Kallemeyn, G.W., Rubin, A.E., Wang, D., Wasson, J.T., (1989). Ordinary chondrites: Bulk compositions, classifications, lithophile-element fractionations, and composition-petrographic type relationships. Geochimica et Cosmochimica Acta 53, 27472767.Google Scholar
Koeberl, C., Delisle, G., Bevan, A., (1992). Meteorite aus der Wüste. Die Geowissenschaften 10, 220225.Google Scholar
Langenauer, M., Krähenbühl, U., (1993). Halogen contamination in Antarctic H5 and H6 chondrites and relation to sites of recovery. Earth and Planetary Science Letters 120, 431442.Google Scholar
Langenauer, M., Krähenbühl, U., (1993). Depth-profiles and surface enrichment of the halogens in four Antarctic H5 chondrites and in two non-Antarctic chondrites. Meteoritics 28, 98104.Google Scholar
Lowry, D.C., (1970). Geology of the Western Australian part of the Eucla Basin. Geological Survey of Western Australia Bulletin 122, .Google Scholar
Martin, H.A., (1973). Palynology and historical ecology of some cave excavations in the Australian Nullarbor. Australian Journal of Botany 21, 283316.Google Scholar
McSween, H.Y., Bennett, M.E. III, (1991). The mineralogy of ordinary chondrites and implications for asteroid spectrophotometry. Icarus 90, 107116.Google Scholar
Nishiizumi, K., (1990). Update on terrestrial ages of Antarctic meteorites.. Lunar and Planetary Institute Technical Report 90-03, pp. 4953..Google Scholar
Nishiizumi, K., Elmore, D., Kubik, P.W., (1989). Update on terrestrial ages of Antarctic meteorites. Earth and Planetary Science Letters 93, 299313.Google Scholar
Noack, Y., Colin, F., Nahon, D., Delvigne, J., Michaux, L., (1993). Secondary-mineral formation during natural weathering of pyroxene: Review and thermodynamic approach. American Journal of Science 293, 111134.Google Scholar
Pachur, H.J., (1980). Climatic history in the late Quaternary in southern Libya and the western Libyan Desert. Salem, M.J., Busrewil, M.T., The Geology of Libya Academic Press, London.781788.Google Scholar
Scherer, P., Schultz, L., Neupert, U., Knauer, M., Neumann, S., Leya, I., Michel, R., Mokos, J., Lipschutz, M.E., Metzler, K., Suter, M., Kubik, P.W., (1997). Allan Hills 88019: An Antarctic H-chondrite with a very long terrestrial age. Meteoritics and Planetary Science 32, 769773.Google Scholar
Scott, E.R.D., McKinley, S.G., Keil, K., (1986). Recovery and classification of thirty new meteorites from Roosevelt County, New Mexico. Meteoritics 21, 303308.Google Scholar
Sipiera, P.P., Becker, M.J., Kawachi, Y., (1987). Classification of twenty-six chondrites from Roosevelt County, New Mexico. Meteoritics 22, 151155.Google Scholar
Street, F.A., Grove, A.T., (1979). Global maps of lake-level fluctuations since 30,000 yr B.P. Quaternary Research 12, 83118.Google Scholar
Velbel, M.A., (1988). The distribution and significance of evaporitic weathering products on Antarctic meteorites. Meteoritics 23, 151159.Google Scholar
Velbel, M.A., Long, D.T., Gooding, J.L., (1991). Terrestrial weathering of Antarctic stone meteorites: Formation of Mg-carbonates on ordinary chondrites. Geochimica et Cosmochimica Acta 55, 6776.Google Scholar
Vilcsek, E., Wänke, H., (1963). Cosmic ray exposure ages and terrestrial ages of stone and iron meteorites derived from 36Cl and 39Ar measurements. Radioactive Dating International Atomic Energy Agency, Vienna.p. 381–392.Google Scholar
Welten, K.C., Alderliesten, C., van der Borg, K., Lindner, L., Loeken, T., Schultz, L., (1997). Lewis Cliff 86360: An Antarctic L-chondrite with a terrestrial age of 2.35 million years. Meteoritics and Planetary Science 32, 775780.Google Scholar
Wlotzka, F., (1989). Meteoritical Bulletin No. 68. Meteoritics 24, 57.Google Scholar
Wlotzka, F., Jull, A. J. T., Donahue, D. J., (1995). Carbon-14 terrestrial ages of meteorites from Acfer, Algeria.. Lunar and Planetary Institute Technical Report 95-02, pp. 3738..Google Scholar
Zolensky, M.E., Wells, G.L., Rendell, H.M., (1990). The accumulation rate of meteorite falls at the Earth's surface: The view from Roosevelt County, New Mexico. Meteoritics 25, 1117.Google Scholar