Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-07T09:55:40.310Z Has data issue: false hasContentIssue false

An Optical luminescence chronology for late Pleistocene aeolian activity in the Colombian and Venezuelan Llanos

Published online by Cambridge University Press:  20 January 2017

Andrew S. Carr*
Affiliation:
Department of Geography, University of Leicester, University Road, Leicester LE1 7RH, UK
Simon J. Armitage
Affiliation:
Centre for Quaternary Research, Department of Geography, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
Juan-Carlos Berrío
Affiliation:
Department of Geography, University of Leicester, University Road, Leicester LE1 7RH, UK
Bibiana A. Bilbao
Affiliation:
Department of Environmental Studies, Universidad Simón Bolivar, Sartenejas. Edo Miranda, Caracas 1060, Venezuela
Arnoud Boom
Affiliation:
Department of Geography, University of Leicester, University Road, Leicester LE1 7RH, UK
*
Corresponding author. E-mail address:[email protected] (A.S. Carr).

Abstract

The lowland savannas (Llanos) of Colombia and Venezuela are covered by extensive aeolian landforms for which little chronological information exists. We present the first optically stimulated luminescence (OSL) age constraints for dunes in the Llanos Orientales of lowland Colombia and new ages for dunes in the Venezuelan Llanos. The sampled dunes are fully vegetated and show evidence of post-depositional erosion. Ages range from 4.5 ± 0.4 to 66 ± 4 ka, with the majority dating to 27–10 ka (Marine Isotope Stage 2). Some dunes accumulated quickly during the last glacial maximum, although most were active 16–10 ka. Accretion largely ceased after 10 ka. All dunes are elongated downwind from rivers, parallel with dry season winds, and are interpreted as source-bordering features. As they are presently isolated from fluvial sediments by gallery forest it is proposed that activity was associated with a more prolonged dry season, which restricted gallery forest, leading to greater sediment availability on river shorelines. Such variability in dry season duration was potentially mediated by the mean latitude of the ITCZ. The cessation of most dune accretion after ca. 10 ka suggests reduced seasonality and a more northerly ITCZ position, consistent with evidence from the Cariaco Basin.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamiec, G., Aitken, M.J. (1998). Dose"rate conversion factors: update. Ancient TL 16, 3750.Google Scholar
Aitken, M. (1985). Thermoluminescence Dating. Academic Press, London.Google Scholar
Arbuszewski, J.A., Cl"roux, C., Bradtmiller, L., Mix, A. (2013). Meridional shifts of the Atlantic intertropical convergence zone since the Last Glacial Maximum. Nature Geoscience 6, 959962.Google Scholar
Armitage, S.J., Bailey, R.M. (2005). The measured dependence of laboratory beta dose rates on sample grain size. Radiation Measurements 39, 123127.Google Scholar
Aymard, G.A., Gonz"lez, V.B. (2007). Consideraciones generals sobre la composici"n flor"stica y diversidad de los bosques de los Llanos de Venezuela.Duno di Stefano, R., Aymard, G., Huber, O. Flora Vascular de los Llanos de Venezuela. Fudena, Fundaci"n Empresas Polar, FIBV, Caracas.5972.Google Scholar
Bailey, R.M., Arnold, L.J. (2006). Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25, 24752502.Google Scholar
Bailey, S.D., Wintle, A.G., Duller, G.A.T., Bristow, C.S. (2001). Sand deposition during the last millennium at Aberffraw, Anglesey, North Wales as determined by OSL dating of quartz. Quaternary Science Reviews 20, 701704.Google Scholar
Bateman, M.D., Boulter, C.B., Carr, A.S., Frederick, C.D., Wilder, M., Peter, D. (2007). Detecting post-depositional disturbance in sandy deposits using optical luminescence. Quaternary Geochronology 2, 5764.Google Scholar
Bateman, M.D., Boulter, C., Carr, A.S., Frederick, C.D., Wilder, M., Peter, D. (2008). Preserving the palaeoenvironmental record in drylands: bioturbation and its significance for luminescence dating derived chronologies. Sedimentary Geology 195, 519.CrossRefGoogle Scholar
Behling, H., Hoogheimstra, H. (1999). Environmental history of the Colombian savannas of the Llanos Orientales since the Last Glacial Maximum from lake records El Pinal and Carimagua. Journal of Paleolimnology 21, 461476.Google Scholar
Behling, H., Hoogheimstra, H. (2000). Holocene Amazon rainforest"savanna dynamics and climatic implications: high-resolution pollen record from Laguna Loma Linda in eastern Colombia. Journal of Quaternary Science 15, 687695.Google Scholar
Bell, W.T. (1979). Thermoluminescence dating: radiation dose rate data. Archaeometry 21, 243246.Google Scholar
Berger, A., Loutre, M.F. (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.Google Scholar
Berr"o, J.-C., Hooghiemstra, H., Behling, H., van der Borg, K. (2000). Late Holocene history of savanna gallery forest from Carimagua area, Colombia. Review of Palaeobotany and Palynology 111, 295308.Google Scholar
Berr"o, J.-C., Hooghiemstra, H., Behling, H., Botero, P., van der Borg, K. (2002). Late Quaternary savanna history of the Colombian Llanos Orientales from Langunas Chenevo and Mozambique; a transect synthesis. The Holocene 12, 3448.Google Scholar
Berr"o, J.C., Wouters, H., Hooghiemstra, H., Carr, A.S., Boom, A. (2012). Using paleoecological data to define vegetation dynamics along the savanna"forest ecotone in Colombia: implications for accurate assessment of human impacts.Myster, R. Ecotones Between Forest and Grassland Springer, New York.p209p228.Google Scholar
Black, D.E., Peterson, L.C., Overpeck, J.T., Kaplan, A., Evans, M.N., Kashgarian, M. (1999). Eight centuries of North Atlantic Ocean atmosphere variability. Science 286, 17091713.CrossRefGoogle ScholarPubMed
Blydenstein, J. (1967). Tropical savanna vegetation of the Llanos of Colombia. Ecology 48, 115.Google Scholar
Botha, G.A., Porat, N. (2007). Soil chronosequence development in dunes on the southeast African coastal plain, Maputaland, South Africa. Quaternary International 162"163, 111132.Google Scholar
Broccoli, A.J., Dahl, K.A., Stouffer, R.J. (2006). Response of the ITCZ to Northern Hemisphere cooling. Geophysical Research Letters 33, L01702Google Scholar
Carneiro-Filho, A., Schwartz, D., Rosique, T., Tatumi, S.H. (2002). Amazonian palaeodunes provide evidence for drier climate phases during the Holocene. Quaternary Research 58, 205209.Google Scholar
Clapperton, C. (1993). Nature of environmental changes in South America at the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 101, 189208.Google Scholar
Clark, P.U., Mix, A.C. (2002). Ice sheets and sea level of the Last Glacial Maximum. Quaternary Science Reviews 21, 17.Google Scholar
Cohen, T.J., Nanson, G.C., Larsen, J.R., Jones, B.G., Price, D.M., Coleman, M., Pietsch, T.J. (2010). Late Quaternary aeolian and fluvial interactions on the Cooper Creek Fan and the association between linear and source-bordering dunes, Strzelecki Desert, Australia. Quaternary Science Reviews 29, 455471.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., Bush, M.B. (2000). Amazonian and neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quaternary Science Reviews 19, 141169.Google Scholar
Cook, K.H., Vizy, E.K. (2006). South American climate during the Last Glacial Maximum: delayed onset of the South American monsoon. Journal of Geophysical Research 111, D02110 10.1029/2005JD005980Google Scholar
Cooper, M.A., Addison, F.T., Alvarez, R., Coral, M., Graham, R.H., Haywood, A.B., Howe, S., Matinez, J., Naar, J., Pe"as, R., Pulham, A.J., Taborda, A. (1995). Basin development and tectonic history of the Llanos Basin, Eastern Cordillera and middle Magdalena Valley, Colombia. AAPG Bulletin 79, 14211443.Google Scholar
Curtis, J.H., Brenner, M., Hodell, D.A. (1999). Climate change in the Lake Valencia Basin, Venezuela, ~ 12,600 yr BP to present. The Holocene 9, 609619.Google Scholar
De Oliveira, P.E., Barreto, A.M.F., Suguio, K. (1999). Late Pleistocene/Holocene climatic and vegetational history of the Brazilian caatinga: the fossil dunes of the middle Sao Francisco River. Palaeogeography, Palaeoclimatology, Palaeoecology 152, 319337.Google Scholar
Duller, G.A.T. (1996). The age of the Koputaroa dunes, southwest North Island, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 121, 105114.Google Scholar
Duller, G.A.T. (2003). Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37, 161165.Google Scholar
Duller, G.A.T. (2007). Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements. Ancient TL 25, 1524.Google Scholar
Eze, P.N., Udeigwe, T.K., Meadows, M.E. (2014). Plinthite and its associated evolutionary forms in soils and landscapes: a review. Pedosphere 24, 153166.Google Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M. (1999). Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia, part 1. Experimental design and statistical models. Archaeometry 41, 339364.Google Scholar
Gonz"lez, C., Dupont, L.M., Behling, H., Wefer, G. (2008). Neotropical vegetation response to rapid climate changes during the last glacial period: palynological evidence from the Cariaco Basin. Quaternary Research 69, 217230.Google Scholar
Gonz"lez, O., Bezada, M., Mill"n, Z., Carrera, J. (2013). Cambios paleoambientales durante el Pleistoceno tard"o-Holoceno de la cuenca del R"o Portuguesa, Llanos Centro-Occidentales, Venezuela. Interciencia 38, 696704.Google Scholar
Goosen, I.D. (1971). Physiography and soils of the Llanos Orientales, Colombia. Publicaties van het Flysisch-Geograpfisch en bodemkundig laboratorium van de Universiteit van Amsterdam, Series B 64, (200 pp.)Google Scholar
Goudie, A.S., Stokes, S., Livingstone, I., Bailiff, I.K., Allison, R.J. (1993). Post-depositional modification of the linear sand ridges of the West Kimberley area of northwest Australia. The Geographical Journal 159, 306317.Google Scholar
Groot, M.H.M., Bogot", R.G., Lourens, L.J., Hooghiemstra, H., Vriend, M., Berr"o, J.C. (2011). Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles. Climate of the Past Discussions 7, 299316.(19 others)Google Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., R"hl, U. (2001). Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293, 13041308.Google Scholar
Hoffmann, J., Bahr, A., Voigt, S., Sch"nfeld, J., N"rnberg, D., Rethemeyer, J. (2014). Disentangling abrupt deglacial hydrological changes in northern South America: insolation versus oceanic forcing. Geology 42, 579582.Google Scholar
Holliday, V.T., Rawling, J.E. (2006). Soil"geomorphic relations of lamellae in eolian sand on the High Plains of Texas and New Mexico. Geoderma 131, 154180.CrossRefGoogle Scholar
Hughen, K.A., Overpeck, J.T., Peterson, L.C., Trumbore, S. (1996). Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 380, 5154.Google Scholar
Iriondo, M.H. (1999). Climate changes in the South American Plains: records of continent-scale oscillation. Quaternary International 57"58, 93112.Google Scholar
Jacobs, Z., Wintle, A.G., Duller, G.A.T. (2003). Optical dating of dune sand from Blombos Cave, South Africa: I"multiple grain data. Journal of Human Evolution 44, 599612.Google Scholar
Johnsson, M.J., Stallard, R.F., Meade, R.H. (1988). First-cycle quartz arenites in the Orinoco River Basin, Venezuela and Colombia. Journal of Geology 96, 263277.Google Scholar
Johnsson, M.J., Stallard, R.F., Lundberg, N. (1991). Controls on the composition of fluvial sands from a tropical weathering environment: sands of the Orinoco River drainage basin, Venezuela and Colombia. Geological Society of America Bulletin 103, 16221647.2.3.CO;2>CrossRefGoogle Scholar
Khobzi, J. (1981). Los campos de duna del norte de Colombia y los Llanos del Orinoco (Colombia y Venezuela). Review CIAF (Bogota) 6, 257292.Google Scholar
Latrubesse, E.M., Stevaux, J.C., Cremon, E.H., May, J.-H., Tatumi, S.H., Hurtado, M.A., Bezada, M., Argollo, J.B. (2012). Late Quaternary megafans, fans and fluvio-aeolian interactions in the Bolivian Chaco, Tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 356, 7588.Google Scholar
Lea, D.W., Pak, D.K., Peterson, L.C., Hughen, K.A. (2003). Synchronicity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science 301, 13611364.CrossRefGoogle ScholarPubMed
Lomax, J., Hilgers, A., Twidale, C.R., Bourne, J.A., Radtke, U. (2007). Treatment of broad palaeodose distributions in OSL dating of dune sands from the western Murray Basin, South Australia. Quaternary Geochronology 2, 5156.Google Scholar
Malag"n, D., Ochoa, G. (1999). Fen"meno de induraci"n en suelos de Llanuras cuaternarias, regi"n sur de San Fernando de Apure. Estado Apure, Venezuela. Interciencia 24, 4248.Google Scholar
Marchant, R., Berr"o, J.C., Behling, H., Boom, A., Hooghiemstra, H. (2006). Colombian dry moist forest transitions in the Llanos Orientales " a comparison of model and pollen-based biome reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 234, 2844.Google Scholar
Maroulis, J.C., Nanson, G.C., Price, D.M., Pietsch, T. (2007). Aeolian"fluvial interaction and climate change: source-bordering dune development over the past 100 ka on Cooper Creek, central Australia. Quaternary Science Reviews 26, 386404.Google Scholar
Martin, L., Bertaux, J., Corr"ge, T., Ledr, M.P., Mourguiart, P., Sifeddine, A., Soubi"s, A., Wirrmann, D., Suguio, K., Turq, B. (1997). Astronomical forcing in contrasting rainfall changes in tropical South America between 12,400 and 8800 cal yr B.P.. Quaternary Research 47, 117122.Google Scholar
May, J.-H. (2014). Dunes and dunefields in the Bolivian Chaco as potential records of environmental change. Aeolian Research 10, 89102.Google Scholar
Mayya, Y.S., Morthekai, P., Murari, M.K., Singhvi, A.K. (2006). Towards quantifying beta micro-dosimetric effects in single-grain quartz dose distribution. Radiation Measurements 41, 10321039.Google Scholar
Mejdahl, V. (1979). Thermoluminescence dating " beta-dose attenuation in quartz grains. Archaeometry 21, 6172.Google Scholar
Mosblech, (2012). North Atlantic forcing of Amazonian precipitation during the last ice age. Nature Geoscience 817820.Google Scholar
Muhs, D.R. (2004). Mineralogical maturity in dunefields of North America, Africa and Australia. Geomorphology 59, 247269.CrossRefGoogle Scholar
Muhs, D.R., Holliday, V.T. (1995). Evidence for active dune sand on the Great Plains in the 19th century from accounts of early explorers. Quaternary Research 43, 198208.Google Scholar
Murray, A.S., Wintle, A.G. (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.Google Scholar
Murray, A.S., Wintle, A.G. (2003). The single-aliquot regenerative-dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381.Google Scholar
Nanson, G.C., Chen, X.Y., Price, D.M. (1995). Aeolian and fluvial evidence of changing climate and wind patterns during the past 100 ka in the western Simpson Desert. Palaeogeography, Palaeoclimatology, Palaeoecology 113, 87102.Google Scholar
Nesbitt, H.W., Young, G.M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 199, 715717.CrossRefGoogle Scholar
Nordin, C.F., P"rez-Hern"ndez, D. (1989). Sandwaves bars and wind-blown sands of the R"o Orinoco, Venezuela and Colombia. U.S. Geological Survey Water Supply Paper 2326-A, (74 pp.)Google Scholar
Page, K.J., Dare-Edwards, A.J., Owens, J.W., Fraser, P.S., Kellett, J., Price, D.M. (2001). TL chronology and stratigraphy of riverine source-bordering dunes near Wagga Wagga, New South Wales, Australia. Quaternary International 83"85, 195210.Google Scholar
Pietsch, T.J., Olley, J.M., Nanson, G.C. (2008). Fluvial transport as a natural luminescence sensitiser of quartz. Quaternary Geochronology 3, 365376.Google Scholar
Prescott, J.R., Hutton, J.T. (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term variations. Radiation Measurements 23, 497500.Google Scholar
Pye, K. (1981). Rate of dune reddening in a humid tropical climate. Nature 290, 582584.CrossRefGoogle Scholar
Rangel, J.O., Minorta, C.V. (2014). Los tipos de vegetaci"n de la Orinoqu"a.Rangel-Ch, J.O. Colombia Diversidad Bi"tica XIV. La regi"n de la Orinoquia de Colombia.533608.(Bogot", Colombia)Google Scholar
Rawling, J.E. (2000). A review of clay lamellae. Geomorphology 35, 19.Google Scholar
Roa Morales, P. (1979). Estudio de los Medanos de los Llanos centrales de Venezuela: Evidencias de un clima desertico. Acta Biologica Venezuelica 10, 1949.Google Scholar
Roberts, R.G., Galbraith, R.F., Olley, J.M., Yoshida, H., Laslett, G.M. (1999). Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part II, results and implications. Archaeometry 41, 365395.Google Scholar
Roskin, J., Porat, N., Tsoar, H., Blumberg, D.G., Zander, A.M. (2011). Age, origin and climatic controls on vegetated linear dunes in the northwestern Negev Desert (Israel). Quaternary Science Reviews 30, 16491674.Google Scholar
Sarmiento, G., Pinillos, M., Pereira da Silva, M., Acevedo, D. (2004). Effects of soil water regime and grazing on vegetation diversity and production in a hyperseasonal sabana in the Apure Llanos, Venezuela. Journal of Tropical Ecology 20, 209220.Google Scholar
Sarnthein, M. (1978). Sand deserts during glacial maximum and climatic optimum. Nature 272, 4346.Google Scholar
Schargel, R. (2007). Geomorfolog"a y suelos.Huber, O. R. Duno di Stefano, G. Aymard. Flora Vascular de los Llanos de Venezuela, Fudena, Fundaci"n Empresas Polar, FIBV, Caracas.p21p42.Google Scholar
Stone, A.E.C., Thomas, D.S.G. (2008). Linear dune accumulation chronologies from the southwest Kalahari, Namibia: challenges of reconstructing late Quaternary palaeoenvironments from aeolian landforms. Quaternary Science Reviews 27, 16671681.Google Scholar
Taylor, S.R., McLennan, S.M. (1985). The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.(312 p.)Google Scholar
Teeuw, R.M., Rhodes, E.J. (2004). Aeolian activity in northern Amazonia: optical dating of Late Pleistocene and Holocene palaeodunes. Journal of Quaternary Science 19, 4954.Google Scholar
Telfer, M.W. (2011). Growth by extension, and reworking, of a south?western Kalahari linear dune. Earth Surface Processes and Landforms 36, 11251135.Google Scholar
Telfer, M.W., Hesse, P.P. (2013). Palaeoenvironmental reconstructions from linear dunefields: recent progress, current challenges and future directions. Quaternary Science Reviews 78, 121.Google Scholar
Thomas, D.S.G., Burrough, S.L. (2014s). Luminescence-based dune chronologies in southern Africa: analysis and interpretation of dune database records across the subcontinent. Quaternary International(In press)Google Scholar
Tricart, J. (1974). Existence de p"riodes s"ches au Quaternaire en Amazonie et dans les regions voisines. Revue Geomorphologie Dynamique 23, 145158.Google Scholar
Tripaldi, A., Z"rate, M.A. (2015s). A review of Late Quaternary inland dune systems of South America east of the Andes. Quaternary International(In press)Google Scholar
Van der Hammen, T., Hooghiemstra, H. (2000). Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Reviews 19, 725742.Google Scholar
Vaz, E.J., Miragaya, J.G. (1989). Thermoluminescence dating of fossil sand dunes in Apure, Venezuela. Acta Cientifica Venezuelana 40, 8182.Google Scholar
V"lez, M.I., Wille, M., Hooghiemstra, H., Metcalfe, S. (2005). Integrated Diatom-pollen Based Holocene Environmental Reconstruction of Lake Las Margaritas, Eastern Savannas of Colombia The Holocene 15, 1184"1198.Google Scholar
Vermeesch, P. (2009). RadialPlotter: a Java application for fission track, luminescence and other radial plots. Radiation Measurements 44, 409410.Google Scholar
Wallinga, J., Murray, A.S., Duller, G.A.T. (2000). Underestimation of equivalent dose in single-aliquot optical dating of feldspars caused by preheating. Radiation Measurements 32, 691695.CrossRefGoogle Scholar
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Cristalli, P.S., Smart, P.L., Richards, D.A., Shen, C.C. (2004). Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432, 740743.Google Scholar
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Ito, E., Solheidm, M. (2006). Inter-hemispheric anti-phasing of rainfall during the last glacial period. Quaternary Science Reviews 25, 33913403.Google Scholar
Wille, M., Hooghiemstra, H., van Geel, B., Behling, H., Jong, A., van der Borg, K. (2003). Sub-millennium-scale migrations of the rainforest"savanna boundary in Colombia: 14C wiggle-matching and pollen analysis of core Las Margaritas. Palaeogeography, Palaeoclimatology, Palaeoecology 193, 201223.Google Scholar
Supplementary material: File

Carr et al. supplementary material

Supplementary Data

Download Carr et al. supplementary material(File)
File 6.9 MB