Hostname: page-component-599cfd5f84-5kswg Total loading time: 0 Render date: 2025-01-07T07:15:16.108Z Has data issue: false hasContentIssue false

Aminostratigraphic Evaluation of Conflicting Age Estimates for the "Young Loess" of Hungary

Published online by Cambridge University Press:  20 January 2017

Eric A. Oches
Affiliation:
Department of Geology and Geophysics, University of Minnesota, 108 Pillsbury Hall, 310 Pillsbury Drive S.E., Minneapolis, Minnesota 55455-0219
William D. McCoy
Affiliation:
Department of Geology and Geography, Box 35820, University of Massachusetts, Amherst, Massachusetts 01003-5820

Abstract

As part of a regional investigation of the aminostratigraphy of central European loess deposits, we have sampled and analyzed the amino acid composition of fossil gastropod shells from stratotype loess profiles at Mende, Basaharc, and Paks, plus the profile at Süttö, in an effort to correlate independently loess-paleosol formations of the "Young Loess" of Hungary with loess units elsewhere in the region. The measured extent of isoleucine epimerization in fossil gastropod shells preserved in loess sediments was used to evaluate the relative ages of stratigraphic units and correlate between discontinuous exposures. Based on amino acid epimerization ratios, we propose a new chronology for the standard "Young Loess" profile of Hungary. Amino acid geochronological data suggest that paleosol complexes MF, BD1 + 2, and BA formed during interglaciations, rather than interstades. Correlations are suggested with PK 2 + 3 (last interglaciation), PK 4 (penultimate interglaciation), and PK 5, respectively, from previously described Czech and Slovak localities.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borsy, Z. Félszerfalvi, J., and Szabó, P. P. (1979). Thermoluminescence dating of several layers of the loess sequences at Paks and Mende (Hungary). Acta Geologica Academiae Scientiarum Hungaricae 22 , 451459.Google Scholar
Bronger, A., and Heinkele, Th. (1989). Paleosol sequences as witnesses of Pleistocene climatic history. Catena, Supplement 16, pp. 163186.Google Scholar
Bronger, A. Pant, R. K., and Singhvi, A. D. (1987). Micromorphology, mineralogy, genesis, and dating of loess-paleosol sequences and their application to Pleistocene chronostratigraphy and paleoclimate: A comparison between southeast central Europe and the Kashmir Valley, Central Asia. In“Aspects of Loess Research” (Liu, Tungsheng, Ed.), pp. 121129. China Ocean Press, Beijing.Google Scholar
Brunnacker, K. Jánossy, D. Krolopp, E. Skoflek, I., and Urban, B. (1980). Das jungmittelpleistozäne Profil von Süttö 6 (Westungam). Eiszeitalter und Gegenwart 30 , 118.Google Scholar
Butrym, J., and Maruszczak, H. (1984). Thermoluminescence chronology of younger and older loesses, In “Lithology and Stratigraphy of Loess and Paleosols” (Pécsi, M., Ed.), pp. 195199. Geographical Research Institute, Hungarian Academy of Sciences, Budapest.Google Scholar
Clark, P. U. Nelson, A. R. McCoy, W. D. Miller, B, B., and Barnes, D. K. (1989). Quaternary aminostratigraphy of Mississippi Valley loess. Geological Society of America Bulletin 101 , 918926.Google Scholar
Fink, J. (1964). Die Gliederung der Wiirmeiszeit in Österreich. “Report on the Vlth International Congress on the Quaternary, Warsaw, 1961,” Vol. IV, Symposium on Loess, pp. 451462.Google Scholar
Fink, J. (1976). Exkursion durch den Österreichen teil des nordlichen Alpenvorlandes und den Donauraum zwischen Krems und Wiener pforte. Mitteilungen der Kommission für Quartärforschung der Österreichischen Akadémie der Wissenschaften, Band 1.Google Scholar
Frenzel, B. Pécsi, M., and Velichko, A. A., Eds. (1992). “Atlas of Paleoclimates and Paleoenvironments of the Northern Hemisphere.” Geographical Research Institute, Hungarian Academy of Sciences, Budapest.Google Scholar
Hahn, G. (1987). Chronology of the Paks loess exposures. In “Loess and Periglacial Phenomena” (Pécsi, M. and French, H., Eds.), pp. 87101. Akadémiai Kiado, Budapest.Google Scholar
Krolopp, E. (1983). Biostratigraphic division of Hungarian Pleistocene formations according to their mollusc fauna. Acta Geologica Hangarica 26 , 6982.Google Scholar
Kukla, G. J. (1970). Correlations between loesses and deep-sea sediments. Geologiska Föreningens i Stockholm Förkandlingar 92, 148180.Google Scholar
Kukla, G. J. (1975). Loess stratigraphy of Central Europe. In “After the Australopithecines” (Butzer, K. W. and Isaac, G. L., Eds.), pp. 99188. Mouton, The Hague.Google Scholar
Kukla, G.J. (1977). Pleistocene land-sea correlations: I. Europe. Earth Science Reviews 13 , 307374.Google Scholar
Imbrie, J. Hays, J. D. Martinson, D. G. McIntyre, A. Mix, A. C. Morley, J. J. Pisias, N. G. Prell, W. L., and Shackleton, N. J. (1984). The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ 18O record. In “Milankovitch and Climate, Part 1” (Berger, A. L. el al, Eds.), pp. 269305. Reidel, Dordrecht.Google Scholar
Márton, P. (1979). Paleomagnetism of the Paks brickyard exposures. Acta Geologicci Academiae Scientiarum Hungaricae 22 , 443449.Google Scholar
McCoy, W. D, (1987). The precision of amino acid geochronology and paleothermometry. Quaternary Science Reviews 6 , 4354.Google Scholar
McCoy, W. D., and Oches, E. A. (1993). Isoleucine epimerization in fossil mollusc shells applied to problems of Quaternary stratigraphy and climatic change. In “Application of direct and indirect data for the reconstruction of climate during the last two millenia” (Ruzickova, E. Zeman, A., and Mirecki, J., Eds.), pp. 1621. Geological Institute of the Academy of Sciences, Czech Republic, Prague.Google Scholar
Miller, G. H., and Brigham-Grette, J. (1989). Amino acid geochronology: Resolution and precision in carbonate fossils. Quaternary Internationa! 1 , 111128.Google Scholar
Miller, G. H., and Hare, P. E. (1980). Amino acid geochronology: Integrity of the carbonate matrix and potential of molluscan fossils. In “Biogeochemistry of Amino Acids” (Hare, P. E. Hoering, T. C., and King, K. Jr., Eds.), pp. 4143. Wiley, New York.Google Scholar
Mitterer, R. M. (1993). The diagenesis of proteins and amino acids in fossil shells. In “Organic Geochemistry” (Engel, M. H. and Macko, S. A., Eds.), pp. 739753. Plenum, New York.CrossRefGoogle Scholar
Oches, E. A., and McCoy, W. D. (in press, a). Amino acid geochronology applied to the correlation and dating of Central European loess deposits. Quaternary Science Reviews. CrossRefGoogle Scholar
Oches, E. A., and McCoy, W. D. (in press, b). Amino acid geochronology applied to the correlation and dating of loess deposits: Examples from Midwestern U.S., China, and Central Europe. In “Loess and China: Essays for Liu Tungsheng” (Smalley, I. Derbyshire, E., and Dijkstra, T., Eds.). Special issue of Quaternary International. Google Scholar
Pécsi, M. (1965). Genetic classification of the deposits constituting the loess profiles of Hungary. Acta Geologica Academiae Scientiarum Hungaricae 9 , 6584.Google Scholar
Pécsi, M. (1979). Lithostratigraphic subdivision of the loess profiles at Paks. Acta Geologica Academiae Scientiarum Hungaricae 22 , 409419.Google Scholar
Pécsi, M. (1984). Is typical loess older than one million years? In “Lithology and Stratigraphy of Loess and Paleosols” (Pécsi, M., Ed.), pp. 213224. Geographical Research Institute, Hungarian Academy of Sciences, Budapest.Google Scholar
Pécsi, M. (1987a). The loess-paleosol and related subaereal sequence in Hungary. GeoJoumal 15 , 151162.Google Scholar
Pécsi, M. (1987b). Type-locality of Young Loess in Hungary at Mende. In “Paleogeography and Loess” (Pécsi, M. and Velichko, A. A., Eds.), pp. 3553. Akadémiai Kiado, Budapest.Google Scholar
Pécsi, M. (1987c). International symposium on loess research, Xian, China: Interpretation of loess-like formations, paleosols and red clays in loess research. In “Aspects of Loess Research” (Liu Tungsheng, , Ed.), pp. 85106. China Ocean Press, Beijing.Google Scholar
Pécsi, M. (1992). Loess of the last glaciation. In “Atlas of Paleoclimates and Paleoenvironments of the Northern Hemisphere” (Frenzel, B. Pécsi, M., and Velichko, A. A., Eds.), pp. 110119. Geographical Research Institute Hungarian Academy of Sciences, Budapest.Google Scholar
Pécsi, M., and Hahn, G. (1987). Paleosol stratotypes in the Upper Pleistocene loess at Basaharc, Hungary. Catena, Supplement 9, pp. 95102.Google Scholar
Pécsi, M., and Pevzner, M. A. (1974). Paleomagnetic measurements in the loess sequences at Paks and Dunaföldvár, Hungary. Földrajzi Közlemények 22 , 215224.Google Scholar
Pécsi, M. Scheuer, Gy., and Schweitzer, F. (1988). Neogene and Quaternary geomorphological surfaces and lithostratigraphical units in the Transdanubian Mountains. In “Paleogeography of Carpathian Regions” (Pécsi, M. and Starkel, L., Eds.), pp. 1111. Geographical Research Institute, Hungarian Academy of Sciences, Budapest.Google Scholar
Pécsi, M., and Schweitzer, F. (1993). Long-term terrestrial records of the Middle Danubian Basin. Quaternary International 17 , 514.Google Scholar
Pécsi, M. Szebeni, E., and Pevzner, M. A. (1979). Upper Pleistocene litho-and chronostratigraphical type profile from the exposure at Mende. Acta Geologica Academiae Scientarum Hungaricae 22 , 371389.Google Scholar
Seppala, M. (1971). Stratigraphy and material of the loess layers at Mende, Hungary. Bulletin of the Geological Society of Finland 43 , 109123.Google Scholar
Singhvi, A. D. Bronger, A. Sauer, W., and Pant, R. K. (1989), Thermoluminescence dating of loess-paleosol sequences in the Carpathian Basin (east-central Europe): A suggestion for a revised chronology. Chemical Geology (Isotope Geoscience Section) 73 , 307317.Google Scholar
Wehmiller, J. F. (1993). Applications of organic geochemistry for Quaternary Research: Aminostratigraphy and aminochronology. In “Organic Geochemistry” (Engel, M. H. and Macko, S. A., Eds.), pp. 755783. Plenum, New York.Google Scholar
Wintle, A. G. (1990). A review of current research on TL dating of loess. Quaternary Science Reviews 9 , 385397.Google Scholar
Wintle, A. G., and Packman, S. C. (1988). Thermoluminescence ages for three sections in Hungary. Quaternary Science Reviews 7 , 315320.Google Scholar
Zöller, L. Oches, E. A., and McCoy, W. D. (1994). Towards a revised chronostratigraphy of loess in Austria with respect to key sections in the Czech Republic and in Hungary. Quaternary Science Reviews 13 , 465472.Google Scholar
Zötler, L., and Wagner, G. A. (1990). Thermoluminescence dating of loess— Recent developments. Quaternary International 7/8, 119128.Google Scholar