Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T07:19:55.504Z Has data issue: false hasContentIssue false

Aminostratigraphic Correlation and Geochronology of Two Quaternary Loess Localities, Central Mississippi Valley

Published online by Cambridge University Press:  20 January 2017

June E. Mirecki
Affiliation:
Department of Geological Sciences, Memphis State University, Memphis, Tennessee 38152
Barry B. Miller
Affiliation:
Department of Geology, Kent State University, Kent, Ohio 44242

Abstract

Amino acid epimeric (aIle/Ile) values from terrestrial molluscs are used to define and correlate three aminozones in loess sequences exposed across the central Mississippi Valley, in Arkansas and Tennessee. Three superposed aminozones are defined at Wittsburg quarry, Arkansas, primarily using aIle/Ile values from total hydrolysates of the gastropod genus Hendersonia: Peoria Loess (aIle/Ile = 0.07 ± 0.01), Roxana Silt (0.14 ± 0.02), and a third loess (0.28 ± 0.06). Loess units at Wittsburg quarry can be correlated on lithologic characteristics eastward across the Mississippi Valley to the Old River section, near Memphis, Tennessee; however, only one loess unit is fossil-bearing (Peoria Loess, aIle/Ile = 0.05) at that section. Radiocarbon analyses of charcoal from the upper Roxana Silt (ca. 26,000 to 29,000 yr old) and mollusc shell carbonate from the basal Roxana Silt (ca. 39,000 yr old) are used to calibrate amino acid epimeric data for the central Mississippi Valley. These data, applied to the apparent parabolic kinetic model of R. M. Mitterer and N. Kriausakul (1989, Quaternary Science Reviews 8, 353-357), suggest an Illinoian (>120,000 yr) age for the third loess in the central Mississippi Valley that is correlative with part of the Loveland Loess in Illinois and Iowa.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Autin, W. J. Burns, S. F. Miller, B. J. Saucier, R. T., and Snead, J. J. (1991). Quaternary geology of the lower Mississippi Valley. In “The Geology of North America, Quaternary Nonglacial Geology: Conterminous U.S.” (Morrison, R. B., Ed.), Vol. K-2, pp. 547582. Geological Society of America, Boulder, CO.Google Scholar
Bamhardt, M. L. (1988). Recent gully activity in Meeman-Shelby state park, southwest Tennessee. Journal of the Tennessee Academy of Science 63, 6164.Google Scholar
Battle, J. M. (1977). “Stratigraphy and Mineralogy of Pleistocene Loesses in West Tennessee.” Unpublished M.S. thesis, Memphis State University.Google Scholar
Buntley, G. J. Daniels, R. B. Gamble, E. E., and Brown, W. T. (1977). Fragipan horizons in soils of the Memphis-Loring-Grenada sequence in western Tennessee. Soil Science Society of America Journal 41, 400407.CrossRefGoogle Scholar
Call, R. E. (1891). The loess of Crowleys Ridge. “Geological Survey of Arkansas Annual Report (1899),” Vol. 2. Little Rock, Arkansas.Google Scholar
Clark, P. U. Nelson, A. R. McCoy, W. D. Miller, B. B., and Barnes, D. K. (1989). Quaternary aminostratigraphy of Mississippi Valley loess. Geological Society of America Bulletin 101, 918926.2.3.CO;2>CrossRefGoogle Scholar
Clark, P. U. McCoy, W. D. Oches, E. A. Nelson, A. R., and Miller, B. B. (1990). Quaternary aminostratigraphy of Mississippi Valley loess: Discussion and Reply. Geological Society of America Bulletin 102, 11361138.Google Scholar
Colman, S. M. Pierce, K. L., and Birkeland, P. W. (1987). Suggested terminology for Quaternary dating methods. Quaternary Research 28, 314319.Google Scholar
Dethier, D. P., and McCoy, W. D. (1993). Aminostratigraphic relations and age of Quaternary Deposits, northern Espanola basin, New Mexico. Quaternary Research 39, 222230.Google Scholar
Follmer, L. R. McKay, E. D. King, J. E., and King, F. B. (1986). Athens quarry sections: Type locality of the Sangamon soil. In “Quaternary Records of Central and Northern Illinois,” Illinois State Geological Survey Guidebook 20, pp. 518.Google Scholar
Forman, S. Bettis, E. A. III Kemmis, T. J., and Miller, B. B. (1992). Chronologic evidence for multiple periods of loess deposition during the Late Pleistocene in the Missouri and Mississippi River Valley, United States: Implications for the activity of the Laurentide ice sheet. Palaeogeography, Palaeoclimatology, Palaeoecology 93, 7183.Google Scholar
Frye, J. C., and Willman, H. B. (1960). Classification of the Wisconsinan Stage in the Lake Michigan glacial lobe. Illinois Geological Survey Circular 285.Google Scholar
Goodfriend, G. A. (1987). Evaluation of amino-acid racemization/ epimerization dating using radiocarbon-dated fossil land snails. Geology 15, 698700.2.0.CO;2>CrossRefGoogle Scholar
Goodfriend, G. A., and Meyer, V. R. (1991). A comparative study of the kinetics of amino acid racemization/epimerization in fossil and modern mollusk shells. Geochimica et Cosmochimica Acta 55, 33553367.Google Scholar
Goodfriend, G. A., and Mitterer, R. M. (1993). A 45,000-year record of tropical lowland biota: The land snail fauna from cave sediments at Coco Ree, Jamaica. Geological Society of America Bulletin 105(1), 1829.Google Scholar
Guccione, M. J. Prior, W. L., and Rutledge, E. M. (1988). Crowley’s Ridge, Arkansas. In “Decade of North American Geology, Centennial Field Guide,” Vol. 4, “South-Central Section of the Geological Society of America” (Haywood, O. T., Ed.), pp. 225230. Geological Society of America, Boulder, CO.Google Scholar
Hare, P. E. St. John, P. A., and Engel, M. H. (1985). Ion-exchange separation of amino acids. In “Chemistry and Biochemistry of Amino Acids” (Barrett, G. C., Ed.), pp. 415425. Chapman and Hall, London.Google Scholar
Jibson, R. W., and Keefer, D. W. (1993). Analysis of the seismic origin of landslides: Examples from the New Madrid seismic zone. Geological Society of America Bulletin 105, 521536.2.3.CO;2>CrossRefGoogle Scholar
Johnson, W. H., and Follmer, L. R. (1989). Source and origin of Roxana Silt and middle Wisconsinian midcontinent glacial activity. Quaternary Research 31, 319331.CrossRefGoogle Scholar
Leigh, D. S., and Knox, J. C. (1993). AMS radiocarbon age of the upper Mississippi Valley Roxana Silt. Quaternary Research 39, 282289.Google Scholar
Leighton, M. M., and Willman, H. B. (1949). “Late Cenozoic Geology of Mississippi Valley.” Itinerary of 2nd biennial State Geologists Field Conference, Illinois State Geological Survey, June 12, 1949. June 25, 1949.Google Scholar
Leighton, M. M., and Willman, H. B. (1950). Loess formations of the Mississippi Valley. Journal of Geology 58, 599623.Google Scholar
Meyer, V. (1993). Error sources in the determination of chromatographic peak-size ratios. American Laboratory March, 34B34G.Google Scholar
Meyer, V. (1991). Amino acid racemization—A tool for dating? In“Chiral Separations by Liquid Chromatography” (Ahuja, S., Ed.), American Chemical Society Symposium Series 471, pp. 217227. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
Miller, G. H., and Brigham-Grette, J. (1989). Amino acid geochronology: Resolution and precision in carbonate fossils. Quaternary International 1, 111128.CrossRefGoogle Scholar
Mitterer, R. M., and Kriausakul, N. (1989). Calculation of amino acid racemization ages based on apparent parabolic kinetics. Quaternary Science Reviews 8, 353357.Google Scholar
Mirecki, J. (1990). “Aminostratigraphy, Geochronology and Geochemistry of Fossils from Late Cenozoic Marine Units in Southeastern Virginia.” Unpublished Ph.D. dissertation, University of Delaware, Newark.Google Scholar
Oches, E. (1990). “Aminostratigraphy of the Peoria Loess, Mississippi Valley, USA, with Late-Quaternary Paleotemperature Estimates.” Unpublished M.S. thesis, University of Massachusetts, Amherst.Google Scholar
Oches, E., and McCoy, W. D. (1993). Aminostratigraphy of Central European Glacial Cycles. Geological Society of America ann. mtg. Abstracts with Program 25(6), A462.Google Scholar
Parks, W. S., and Lounsbury, R. W. (1975). Environmental geology of Memphis, Tennessee. In “Field Trips in Western Tennessee” (Stearns, R. G., Ed.), Report of Investigations No. 36, pp. 3551. Tennessee Division of Geology, Nashville, TN.Google Scholar
Porter, D., and Bishop, S. (1990a). Soil and lithostratigraphy below the Loveland silt, Crowley’s Ridge, Arkansas. In “Field Guide to the Mississippi Alluvial Valley, Northeast Arkansas and Southeast Missouri. South-Central Cell, Friends of the Pleistocene” (Guccione, M. J. and Rutledge, E. M., Eds.), pp. 4555. Department of Geology, University of Arkansas, Fayetteville.Google Scholar
Porter, D., and Bishop, S. (1990b). Soil and lithostratigraphy below the Loveland/Sicily Island Silt, Crowleys Ridge, Arkansas. Proceedings of the Arkansas Academy of Science 44, 8690.Google Scholar
Rutledge, E. M. West, L. T., and Omakupt, M. (1985). Loess deposits on a Pleistocene age terrace in eastern Arkansas. Soil Science Society of America Journal 49, 12311238.CrossRefGoogle Scholar
Rutledge, E. M. West, L. T., and Guccione, M. J. (1990). Loess deposits of northeast Arkansas. In “Field Guide to the Mississippi Alluvial Valley, Northeast Arkansas and Southeast Missouri. SouthCentral Cell, Friends of the Pleistocene” (Guccione, M. J. and Rutledge, E. M., Eds.), pp. 5798. Department of Geology, University of Arkansas, Fayetteville.Google Scholar
Safford, J. M. (1869). “Geology of Tennessee,” pp. 428430, 434. Department of Agriculture and Commerce, Nashville, TN.Google Scholar
Shimek, B. (1916). The loess of Crowley’s Ridge, Arkansas. Proceedings of the Iowa Academy of Sciences 23, 147162.Google Scholar
Skinner, A. F., and Mirecki, J. (1993). ESR dating of molluscs—Is it only a shell game? Applied Radiation and Isotopes 44(1/2), 139143.Google Scholar
Wascher, H. L. Humbert, R. P., and Cady, J. G. (1947). Loess in the southern Mississippi Valley and identification and distribution of the loess sheets. Soil Science Society of America Proceedings 1947 12, 389399.Google Scholar
Wehmiller, J. F. (1984). Interlaboratory comparison of amino acid enantiomeric ratios of fossil Pleistocene mollusks. Quaternary Research 22, 109120.Google Scholar
Wehmiller, J. F. (1990). Amino acid racemization: applications in chemical taxonomy and chronostratigraphy of Quaternary fossils. In“Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends” (Carter, J. G., Ed.), Vol. I, pp. 583608. Van Nostrand Reinhold, New York.Google Scholar
Wehmiller, J. F. (1993). Applications of Organic Geochemistry for Quaternary Research. Amino-stratigraphy and Aminochronology. In“Organic Geochemistry: Principles and Applications” (Engle, M. H. and Macko, S. A., Eds.), pp. 755783. Plenum, New York.Google Scholar
Wehmiller, J. F. Belknap, D. F. Boutin, B. S. Mirecki, J. E. Rahaim, S. D., and York, L. L. (1988). A review of the aminostratigraphy of Quaternary mollusks from United States Atlantic Coastal Plain sites. Geological Society of America Special Paper 227, 69110.Google Scholar
West, L. T. Rutledge, E. M., and Barber, D. M. (1980). Sources and properties of loess deposits on Crowley’s Ridge in Arkansas. Soil Science Society of America Journal 44, 353358.Google Scholar
Williams, K. M., and Smith, G. G. (1977). A critical evaluation of the application of amino acid racemization to geochronology and geothermometry. Origins of Life 8, 91144 CrossRefGoogle ScholarPubMed