Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T17:36:34.810Z Has data issue: false hasContentIssue false

Accuracy of North American Human Skeleton Ages

Published online by Cambridge University Press:  20 January 2017

Thomas W. Stafford Jr.
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, 2801 Upton St. N.W., Washington, DC 20008 USA Center for Analytical Chemistry, Building 222, Room B364, National Institute of Standards and Technology (Formerly National Bureau of Standards), Gaithersburg, Maryland 20899 USA
P.E. Hare
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, 2801 Upton St. N.W., Washington, DC 20008 USA
Lloyd Currie
Affiliation:
Center for Analytical Chemistry, Building 222, Room B364, National Institute of Standards and Technology (Formerly National Bureau of Standards), Gaithersburg, Maryland 20899 USA
A. J. T. Jull
Affiliation:
University of Arizona NSF Facility for Radioisotope Analysis, Department of Physics, University of Arizona, Tucson, Arizona 85721 USA
Douglas Donahue
Affiliation:
University of Arizona NSF Facility for Radioisotope Analysis, Department of Physics, University of Arizona, Tucson, Arizona 85721 USA

Abstract

Accelerator mass spectrometry (AMS) radiocarbon dates fail to provide conclusive evidence that all New World human fossils are younger than approximately 11,000 yr. Because fossil bones vary widely in preservation, their radiocarbon dates are not equally accurate. Molecular-level radiocarbon dating, which used individual amino acids to assess fossil diagenesis, revealed that dates on known-age, noncollagenous bone were underestimated by at least 2000 to 9000 yr. The significance is that >11,000-yr-old fossil bones with poor preservation would yield Holocene and not Pleistocene radiocarbon ages, regardless of what chemical pretreatment or 14C counting method was used. Irreplaceable evidence for Pleistocene-age fossils in the New World could be lost if the diagenesis of fossil bones is not evaluated before the bones are radiocarbon dated. In contrast, radiocarbon ages for collagenous fossils can be determined more accurately if 14C is measured in several individual amino acids that are isolated from collagenous bone protein. Molecular-level radiocarbon dating will greatly improve not only the accuracy of chronologies for human migrations and animal extinctions, but of all late Quaternary chronologies that are based upon the 14C dating of fossil proteins.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adovasio, J.M. Carlisle, R.C., (1984). An Indian hunter's camp for 20,000 years Scientific American 250 130136 Google Scholar
Bada, J.L., (1985). Aspartic acid racemization ages of California paleoindian skeletons American Antiquity 50 645647 Google Scholar
Bada, J.L. Schroeder, R.A. Carter, G.F., (1974). New evidence for the antiquity of Man in North America deduced from aspartic acid racemization Science 184 791793 Google Scholar
Bada, J.L. Schroeder, R.A. Protsch, R. Berger, R., (1974). Concordance of collagen-based radiocarbon and aspartic-acid racemization ages Proceedings of the national Academy of Sciences USA 71 914917 Google Scholar
Bada, J.L. Helfman, P.M., (1975). Amino acid racemization dating of fossil bones World Archaeology 7 160173 Google Scholar
Rada, J.L. Masters, P.M., (1982). Evidence for a ∼50,000-year antiquity of Man in the Americas derived from amino-acid racemization in human skeletons Ericson, J.E. Taylor, R.E. Berger, R. Peopling of the New World Ballena Los Altos, CA 171179 Google Scholar
Bada, J.L. Gillespie, R. Gowlett, J.A.J. Hedges, R.E.M., (1984). Accelerator mass spectrometry radiocarbon ages of amino acid extracts from Californian palaeoindian skeletons Nature (London) 312 442444 CrossRefGoogle ScholarPubMed
Berger, R. Protsch, R. Reynolds, R. Rozaire, C. Sackett, J.R., (1971). New radiocarbon dates based on bone collagen of California Paleoindians Contributions of University of California Archaeological Research Facility 12 4349 Google Scholar
Bischoff, J.L. Childers, W.M., (1979). Temperature calibration of amino acid racemization: Age implications for the Yuha skeleton Earth and Planetary Science Letters 45 172180 CrossRefGoogle Scholar
Bischoff, J.L. Rosenbauer, J.R., (1981). Uranium series dating of human skeletal remains from the Del Mar and Sunnyvale sites, California Science 213 10031005 Google Scholar
Brothwell, D. Burleigh, R., (1977). On sinking Otavalo Man Journal of Archaeological Science 4 291294 Google Scholar
Bryan, A.L., (1986). New Evidence for the Pleistocene Peopling of the Americas Center for the Study of Early Man Orono, ME Google Scholar
Dillehay, T.D. Collins, M.B., (1988). Early cultural evidence from Monte Verde in Chile Nature (London) 332 150152 Google Scholar
Elmore, D. Phillips, F.M., (1987). Accelerator mass spectrometry for measurement of long-lived radioisotopes Science 236 543550 Google Scholar
Ennis, P. Noltmann, E.A. Hare, P.E. Slota, P.J. Jr. Payen, L.A. Prior, C.A. Taylor, R.E., (1986). Use of AMS 14C in the study of problems in aspartic acid racemization-deduced age estimates on bone Radiocarbon 28 539546 CrossRefGoogle Scholar
Gove, H.E. Litherland, A.E. Elmore, D., (1987). Accelerator mass spectrometry. Proceedings of the Fourth International Symposium on Accelerator Mass Spectrometry Nuclear Instruments and Methods in Physics Research B29 1445 Google Scholar
Gowlett, J.A.J., (1986). Problems in dating early human settlement of the Americas Gowlett, J.A.J. Hedges, R.E.M. Archaeological Results from Accelerator Dating Oxford Univ. Press Oxford, England 5162 Google Scholar
Hare, P.E., (1974). Amino acid dating of bone—the influence of water Carnegie Institution of Washington Yearbook 73 576581 Google Scholar
Hare, P.E., (1980). Organic geochemistry of bone and its relation to the survival of bone in the natural environment Behrensmeyer, A.K. Hill, A.P. Fossils in the Making: Vertebrate Taphonomy and Paleoecology Univ. of Chicago Press Chicago, IL 208219 Google Scholar
Haynes, C.V. Jr. Carbon-14 dates and Early Man in the New World Martin, P.S. Wright, H.E., (1967). Pleistocene Extinctions: The Search for a Cause Yale Univ. Press New Haven, CT 267286 Google Scholar
Haynes, C.V. Jr. Archaeological geology of some selected paleo-indian sites Black, C.C., (1974). History and Prehistory of the Lubbock Lake Site The Museum Journal XV West Texas Museum Association Lubbock, TX 133139 Google Scholar
Haynes, C.V., (1982). Were Clovis progenitors in Beringia? Hopkins, D. Mathews, J. Schweiger, S. Young, S. Paleoecology of Beringia Academic Press New York 383398 Google Scholar
Haynes, C.V., (1984). Stratigraphy and late Pleistocene extinction in the United States Martin, P.S. Klein, R.G. Quaternary Extinctions: A Prehistoric Revolution Univ. of Arizona Press Tucson, AZ 345353 Google Scholar
Hedges, R.E.M. Gowlett, J.A.J., (1986). Radiocarbon dating by accelerator mass spectrometry Scientific American 254 100107 Google Scholar
Krieger, A.D., (1964). Early Man in the New World Jennings, J.D. Norbeck, E. Prehistoric Man in the New World Univ. of Chicago Press Chicago, IL 2381 Google Scholar
Kessels, H.J. Dungworth, G., (1980). Necessity of reporting amino acid compositions of fossil bones where racemization analyses are used for geochronological applications: Inhomogeneities of D/L amino acids in fossil bones teBiochemistry of Amino Acids Hare, P.E. Hoering, T.C. King, K. Jr. Wiley New York, NY 527541 Google Scholar
Leonhardy, F.C., (1966). Domebo: A Paleo-Indian Mammoth Kill in the Prairie-Plains The Great Plains Historical Association. Contribution of the Museum of the Great Plains No. 1 Lawton, OK Google Scholar
Lynch, T.F. Gillespie, R. Gowlett, J.A.J. Hedges, R.E.M., (1985). Chronology of Guitarrero Cave, Peru Science 229 864867 CrossRefGoogle ScholarPubMed
Macko, S.A. Fogel, M.L. Hare, P.E. Hoering, T.C., (1987). Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganics Chemical Geology 65 7992 Google Scholar
Martin, P.S., (1967). Prehistoric Overkill Martin, P.S. Wright, H.E. Pleistocene Extinctions: The Search for a Cause Yale Univ. Press New Haven, CT 75120 Google Scholar
Martin, P.S., (1984). Prehistoric overkill: The global model Martin, P.S. Klein, R.G. Quaternary Extinctions: A Prehistoric Revolution Univ. of Arizona Press Tucson 354403 Google Scholar
Masters, P.M., (1987). Preferential preservation of noncollagenous protein during bone diagenesis: Implications for chronometric and stable isotopic measurements Geochimica et Cosmochimica Acta 51 32093214 Google Scholar
Matsu'ura, S. Ueta, N., (1980). Fraction dependent variation of aspartic acid racemization age of fossil bone Nature (London) 286 883884 Google Scholar
Slota, P.J. Jr. Jull, A.J.T. Linick, T.W. Toolin, L.J., (1987). Preparation of small samples for 14C accelerator targets by catalytic reduction of CO Radiocarbon 29 303306 Google Scholar
Stafford, T.W. Jr. Duhamel, R.C. Haynes, C.V. Jr. Brendel, K., (1982). Isolation of proline and hydroxyproline from fossil bone Life Sciences 31 931938 CrossRefGoogle ScholarPubMed
Stafford, T.W. Jr. Jull, A.J.T. Zabel, T.H. Donahue, D.J. Duhamel, R.C. Brendel, K. Haynes, C.V. Jr. Bischoff, J.L. Payen, L.A. Taylor, R.E., (1984). Holocene age of the Yuha burial: Direct radiocarbon determinations by accelerator mass spectrometry Nature (London) 308 446447 CrossRefGoogle ScholarPubMed
Stafford, T.W. Jr. Jull, A.J.T. Brendel, K. Duhamel, R.C. Donahue, D., (1987). Study of bone radiocarbon dating accuracy at the University of Arizona NSF accelerator facility for radioisotope analysis Radiocarbon 29 2444 CrossRefGoogle Scholar
Stafford, T.W. Jr. Brendel, K. Duhamel, R., (1988). Radiocarbon, 13C, and 15N analysis of fossil bone: Removal of humates with XAD-2 resin Geochimica et Cosmochimica Acta 52 22572267 Google Scholar
Stuiver, M. Kra, R.S., (1986). Proceedings of the Twelfth International Radiocarbon Conference—Trondheim Norway Radiocarbon 28 177804 Google Scholar
Taylor, R.E., (1983). Non-concordance of radiocarbon and amino acid racemization deduced age estimates on human bone Radiocarbon 25 647654 Google Scholar
Taylor, R.E. Payen, L.A. Gerow, B. Donahue, D.J. Zabel, T.H. Jull, A.J.T. Damon, P.E., (1983). Middle Holocene age of the Sunnyvale human skeleton Science 220 12711273 Google Scholar
Taylor, R.E. Payen, L.A. Prior, C.A. Slota, P.J. Jr. Gillespie, R. Gowlett, J.A.J. Hedges, R.E.M. Jull, A.J.T. Zabel, T.H. Donahue, D.J. Berger, R., (1985). Major revisions in the Pleistocene age assignments for North American human skeletons by C-14 accelerator mass spectrometry: None older than 11,000 C-14 years B.P. American Antiquity 50 136140 Google Scholar
Verkouteren, R.M. Klouda, G.A. Currie, L.A. Donahue, D.J. Jull, A.J.T. Linick, T.W., (1987). Preparation of microgram samples on iron wool for radiocarbon analysis via accelerator mass spectrometry: A closed system approach Nuclear Instruments and Methods in Physics Research B29 4144 CrossRefGoogle Scholar
Wölfli, W. Polach, H.A. Andersen, H.H., (1984). Accelerator mass spectrometry. Proceedings of the Third International Symposium on accelerator mass spectrometry Nuclear Instruments and Methods in Physics Research 233 91448 [B5] Google Scholar