Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T10:06:11.190Z Has data issue: false hasContentIssue false

Vegetation and environmental changes in Northern Anatolia between 134 and 119 ka recorded in Black Sea Sediments

Published online by Cambridge University Press:  20 January 2017

Lyudmila S. Shumilovskikh*
Affiliation:
Department of Palynology and Climate Dynamics, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
Helge W. Arz
Affiliation:
Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119 Rostock-Warnemünde, Germany
Antje Wegwerth
Affiliation:
Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119 Rostock-Warnemünde, Germany
Dominik Fleitmann
Affiliation:
Department of Archaeology, School of Archaeology, Geography and Environmental Science, University of Reading, Whiteknights, PO Box 227, Reading RG6 6AB, UK Institute of Geological Sciences, University of Bern, Baltzerstrasse 3, 3012 Bern, Switzerland Oeschger Centre for Climate Change Research, University of Bern, Baltzerstrasse 3, 3012 Bern, Switzerland
Fabienne Marret
Affiliation:
School of Environmental Sciences, University of Liverpool, Liverpool L69 7ZT, UK
Norbert Nowaczyk
Affiliation:
Helmholtz Center Potsdam GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Pavel Tarasov
Affiliation:
Institute of Geological Sciences, Palaeontology Section, Freie University Berlin, Malteserstr. 74-100, House D, Berlin 12249, Germany
Hermann Behling
Affiliation:
Department of Palynology and Climate Dynamics, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
*
*Corresponding author at: Department of Palynology and Climate Dynamics, Albrecht-von-Haller Institute for Plant Sciences, University of G"ttingen, Untere Karsp"le 2, 37073 G"ttingen, Germany. Fax: + 49 551 395719. E-mail address:[email protected] (L.S. Shumilovskikh).

Abstract

This multiproxy study on SE Black Sea sediments provides the first detailed reconstruction of vegetation and environmental history of Northern Anatolia between 134 and 119 ka. Here, the glacial–interglacial transition is characterized by several short-lived alternating cold and warm events preceding a meltwater pulse (~ 130.4–131.7 ka). The latter is reconstructed as a cold arid period correlated to Heinrich event 11. The initial warming is evidenced at ~ 130.4 ka by increased primary productivity in the Black Sea, disappearance of ice-rafted detritus, and spreading of oaks in Anatolia. A Younger Dryas-type event is not identifiable. The Eemian vegetation succession corresponds to the main climatic phases in Europe: i) the QuercusJuniperus phase (128.7–126.4 ka) indicates a dry continental climate; ii) the OstryaCorylusQuercusCarpinus phase (126.4–122.9 ka) suggests warm summers, mild winters, and high year-round precipitation; iii) the FagusCarpinus phase (122.9–119.5 ka) indicates cooling and high precipitation; and iv) increasing Pinus at ~ 121 ka marks the onset of cooler/drier conditions. Generally, pollen reconstructions suggest altitudinal/latitudinal migrations of vegetation belts in Northern Anatolia during the Eemian caused by increased transport of moisture. The evidence for the wide distribution of Fagus around the Black Sea contrasts with the European records and is likely related to climatic and genetic factors.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bar-Matthews, M., Ayalon, A., Kaufman, A., (1997). Late Quaternary paleoclimate in the Eastern Mediterranean Region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quaternary Research 47, 155168. 10.1006/qres.1997.1883(http://linkinghub.elsevier.com/retrieve/pii/S0033589497918834 ).Google Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., Hawkesworth, C.J., (2003). Sea"land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67, 31813199. 10.1016/S0016-7037(02)01031-1(http://linkinghub.elsevier.com/retrieve/pii/S0016703702010311 ).CrossRefGoogle Scholar
Bartov, Y., Enzel, Y., Porat, N., Stein, M., (2007). Evolution of the Late Pleistocene Holocene Dead Sea Basin from Sequence Statigraphy of Fan Deltas and Lake-Level Reconstruction. Journal of Sedimentary Research 77, 680692. 10.2110/jsr.2007.070(http://jsedres.sepmonline.org/cgi/doi/10.2110/jsr.2007.070 ).CrossRefGoogle Scholar
Baruch, U., (1986). The Late Holocene Vegetational History of Lake Kinneret (Sea of Galilee), Israel. Pal"orient 12, 3748.Google Scholar
Baruch, U., (1990). Palynological evidence of human impact on the vegetation as recorded in Late Holocene lake sediments in Israel. Bottema, , Entjes-Nieborg, , Zeist, V. Man's Role in the Shaping of the Eastern Mediterranean Landscape. Balkema, 283293.Google Scholar
Broshi, M., Finkelstein, I., (1992). The population of Palestine in Iron Age II. Bulletin of the American Schools of Oriental Research 4760.Google Scholar
Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A.F., Krebs, P., (2009). Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews Elsevier Ltd 28, 555576.CrossRefGoogle Scholar
Daniau, A.-L., Bartlein, P.J., Harrison, S.P., Prentice, I.C., Brewer, S., (2012). Predictability of biomass burning in response to climate changes. Global Biogeochemical Cycles 26, 10.1029/2011GB004249(n/a"n/a, http://doi.wiley.com/10.1029/2011GB004249 ).CrossRefGoogle Scholar
Dansgaard, W., (1964). Stable isotopes in precipitation. Tellus 16, 438468.Google Scholar
Develle, A.-L., Herreros, J., Vidal, L., Sursock, A., Gasse, F., (2010). Controlling factors on a paleo-lake oxygen isotope record (Yammo"neh, Lebanon) since the Last Glacial Maximum. Quaternary Science Reviews 29, 865886. 10.1016/j.quascirev.2009.12.005(http://linkinghub.elsevier.com/retrieve/pii/S0277379109004181 ).CrossRefGoogle Scholar
Dubowski, Y., Geifman, Y., Stiller, M., (2003). Isotopic paleolimnology of Lake Kinneret. Limnology and Oceanography 48, 6878. 10.4319/lo.2003.48.1.0068(http://www.aslo.org/lo/toc/vol_48/issue_1/0068.html ).Google Scholar
Dusar, B., Verstraeten, G., Notebaert, B., Bakker, J., (2011). Earth-Science Reviews Holocene environmental change and its impact on sediment dynamics in the Eastern Mediterranean. Earth Science Reviews Elsevier B.V. 108, 137157. 10.1016/j.earscirev.2011.06.006(http://dx.doi.org/10.1016/j.earscirev.2011.06.006 ).CrossRefGoogle Scholar
Faegri, K., Iversen, J., (1989). Textbook of Pollen Analysis. John Wiley & Sons, New York.(328 pp.).Google Scholar
Gustafsson, "., Haghseta, F., Chan, C., MacFarlane, J., Gschwend, P.M., (1997). Quantification of the Dilute Sedimentary Soot Phase: Implications for PAH Speciation and Bioavailability. Environmental Science & Technology 31, 203209. 10.1021/es960317s(http://pubs.acs.org/doi/abs/10.1021/es960317s ).Google Scholar
Gustafsson, "., Bucheli, T.D., Kukulska, Z., Andersson, M., Largeau, C., Rouzaud, J.-N., Reddy, C.M., Eglinton, T.I., (2001). Evaluation of a protocol for the quantification of black carbon in sediments. Global Biogeochemical Cycles 15, 881890.Google Scholar
Hammes, K., Schmidt, M.W.I., Smernik, R.J., Currie, L. a, Ball, W.P., Nguyen, T.H., Louchouarn, P., Houel, S., Gustafsson, "., Elmquist, M., Cornelissen, G., Skjemstad, J.O., Masiello, C.A., Song, J., Peng, P., Mitra, S., Dunn, J.C., Hatcher, P.G., Hockaday, W.C., Smith, D.M., Hartkopf-Fr"der, C., B"hmer, A., L"er, B., Huebert, B.J., Amelung, W., Brodowski, S., Huang, L., Zhang, W., Gschwend, P.M., Flores-Cervantes, D.X., Largeau, C., Rouzaud, J.-N., Rumpel, C., Guggenberger, G., Kaiser, K., Rodionov, A., Gonzalez-Vila, F.J., Gonzalez-Perez, J. a, De la Rosa, J.M., Manning, D.a.C., López-Cap"l, E., Ding, L., (2007). Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochemical Cycles 21, 10.1029/2006GB002914(http://www.agu.org/pubs/crossref/2007/2006GB002914.shtml ).Google Scholar
Han, Y.M., Marlon, J.R., Cao, J.J., Jin, Z.D., An, Z.S., (2012). Holocene linkages between char, soot, biomass burning and climate from Lake Daihai, China. Global Biogeochemical Cycles 26, 4 10.1029/2011GB004197(p. n/a"n/a).Google Scholar
Hazan, N., Stein, M., Agnon, A., Marco, S., Nadel, D., Negendank, J., Schwab, M.J., Neev, D., (2005). The late Quaternary limnological history of Lake Kinneret (Sea of Galilee), Israel. Quaternary Research 63, 6077. 10.1016/j.yqres.2004.09.004(http://linkinghub.elsevier.com/retrieve/pii/S0033589404001103 ).Google Scholar
Higuera, P., (2009). CharAnalysis 0. 9: Diagnostic and Analytical Tools for Sediment-Charcoal, Analysis. 127.Google Scholar
Horowitz, A., (1979). The Quaternary of Israel. Academic Press, New York.394 pp.Google Scholar
IPCC, . (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Google Scholar
Kitagawa, H., Tareq, S., Matsuzaki, H., Inoue, N., Tanoue, E., Yasuda, Y., (2007). Radiocarbon concentration of lake sediment cellulose from Lake Erhai in southwest China. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259, 526529. 10.1016/j.nimb.2007.01.195(http://linkinghub.elsevier.com/retrieve/pii/S0168583X07002947 ).Google Scholar
Litt, T., Ohlwein, C., Neumann, F.H., Hense, A., Stein, M., (2012). Holocene climate variability in the Levant from the Dead Sea pollen record. Quaternary Science Reviews Elsevier Ltd 49, 95105. 10.1016/j.quascirev.2012.06.012(http://linkinghub.elsevier.com/retrieve/pii/S0277379112002430 ).Google Scholar
Lozano-García, S., Sosa-N"jera, S., Sugiura, Y., Caballero, M., (2005). 23,000 yr of vegetation history of the Upper Lerma, a tropical high-altitude basin in Central Mexico. Quaternary Research 64, 7082. 10.1016/j.yqres.2005.02.010(http://linkinghub.elsevier.com/retrieve/pii/S0033589405000360 ).CrossRefGoogle Scholar
Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., (2009). Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science (New York, N.Y.) 326, 5957 12561260. 10.1126/science.1177303.Google Scholar
Masiello, C.A., (2004). New directions in black carbon organic geochemistry. Marine Chemistry 92, 201213. 10.1016/j.marchem.2004.06.043(http://linkinghub.elsevier.com/retrieve/pii/S0304420304002051 ).CrossRefGoogle Scholar
Migowski, C., Stein, M., Prasad, S., Negendank, J., Agnon, a. (2006). Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record. Quaternary Research 66, 421431. 10.1016/j.yqres.2006.06.010(http://linkinghub.elsevier.com/retrieve/pii/S0033589406000925 ).CrossRefGoogle Scholar
Millspaugh, S.H., Whitlock, C., (1995). A 750-year fire history based on lake sediment records in central Yellowstone National Park, USA. The Holocene 5, 283292. 10.1177/095968369500500303(http://hol.sagepub.com/cgi/doi/10.1177/095968369500500303 ).Google Scholar
Moriondo, M., Good, P., Durao, R., Bindi, M., Giannakopoulos, C., Corte-Real, J., (2006). Potential impact of climate change on fire risk in the Mediterranean area. Climate Research 31, 8595. 10.3354/cr031085(http://www.int-res.com/abstracts/cr/v31/n1/p85-95/ ).Google Scholar
Neumann, F.H., Sch"lzel, C., Litt, T., Hense, A., Stein, M., (2007). Holocene vegetation and climate history of the northern Golan heights (Near East). Vegetation History and Archaeobotany 16, 329346. 10.1007/s00334-006-0046-x(http://www.springerlink.com/index/10.1007/s00334-006-0046-x ).Google Scholar
Nguyen, T.H., (2004). An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment. Organic Geochemistry 35, 217234. 10.1016/j.orggeochem.2003.09.005(http://linkinghub.elsevier.com/retrieve/pii/S0146638003002171 ).CrossRefGoogle Scholar
Orland, I., Bar-Matthews, M., Kita, N., Ayalon, A., Matthews, A., Valley, J., (2009). Climate deterioration in the Eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel. Quaternary Research University of Washington 71, 2735. 10.1016/j.yqres.2008.08.005(http://linkinghub.elsevier.com/retrieve/pii/S0033589408001099 ).Google Scholar
Paillard, D., Labeyrie, L., Yiou, P., (1996). Macintosh program performs time-series analysis. EOS Transactions of the American Geophysical Union 77, 379.CrossRefGoogle Scholar
Pausas, J.G., Fernandez-Mu"oz, S., (2012). Fire regime changes in the Western Mediterranean Basin: from Fuel-limited to drought-driven fire regime. Climatic Change 110, 1"2 215226.CrossRefGoogle Scholar
Power, M.J., Marlon, J.R., Bartlein, P.J., Harrison, S.P., (2010). Fire history and the Global Charcoal Database: a new tool for hypothesis testing and data exploration. Palaeogeography, Palaeoclimatology, Palaeoecology 291, 1"2 5259. 10.1016/j.palaeo.2009.09.014.Google Scholar
Rambeau, C.M.C., (2010). Palaeoenvironmental reconstruction in the Southern Levant: synthesis, challenges, recent developments and perspectives. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences 368, 52255248. 10.1098/rsta.2010.0190(http://www.ncbi.nlm.nih.gov/pubmed/20956369 ).Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., Van der Pflicht, J., Weyhenmeyer, C.E., (2004). IntCal04 terrestrial radiocarbon age calibration, 0"26 Cal Kyr BP. Radiocarbon 46, 10291058.Google Scholar
Roberts, N., Eastwood, W.J., Kuzucuoglu, C., Fiorentino, G., Caracuta, V., (2011). Climatic, vegetation and cultural change in the eastern Mediterranean during the mid-Holocene environmental transition. The Holocene 21, 147162. 10.1177/0959683610386819(http://hol.sagepub.com/cgi/doi/10.1177/0959683610386819 ).Google Scholar
Rosen, A.M., (2007). Civilizing Climate: Social Responses to Climate Change in the Ancient Near East. AltaMira Press, Lanham, MD.Google Scholar
Rozanski, K., Araguas-Araguas, L., Gonfiantini, R., (1993). Isotopic patterns in modern global precipitation. Climate Change in Continental Isotopic Records. Geophysical Monograph 78 American Geophysical Union, Washington, DC.136.Google Scholar
Schwab, M.J., Neumann, F.H., Litt, T., Negendank, J., Stein, M., (2004). Holocene palaeoecology of the Golan Heights (Near East): investigation of lacustrine sediments from Birkat Ram crater lake. Quaternary Science Reviews 23, 17231731. 10.1016/j.quascirev.2004.05.001(http://linkinghub.elsevier.com/retrieve/pii/S0277379104001258 ).CrossRefGoogle Scholar
Singer, a, Gal, M., Banin, a. (1972). Clay minerals in recent sediments of lake Kinneret (Tiberias), Israel. Sedimentary Geology 8, 289308. 10.1016/0037-0738(72)90045-0(http://linkinghub.elsevier.com/retrieve/pii/0037073872900450 ).CrossRefGoogle Scholar
Singh, G., Geissler, E.A., (1985). Lake Cainozoic history of vegetation, fire, lake levels and climate, at Lake George, New South Wales, Australia. Philosophical Transactions of the Royal Society of London 311, 379447.Google Scholar
Stiller, M., Kaufman, A., (1985). Paleoclimatic trends revealed by the isotopic composition of carbonates in Lake Kinneret. Zeitschrift fuer Gletscherkunde 21, 7987.Google Scholar
Stuiver, M., Reimer, P., (1993). Extended 14C database and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.Google Scholar
Sugita, S., (1993). A model of pollen source area for an entire lake surface. Quaternary Research 39, 239244.CrossRefGoogle Scholar
Thevenon, F., Anselmetti, F.S., (2007). Charcoal and fly-ash particles from Lake Lucerne sediments (Central Switzerland) characterized by image analysis: anthropologic, stratigraphic and environmental implications. Quaternary Science Reviews 26, 26312643. 10.1016/j.quascirev.2007.05.007.CrossRefGoogle Scholar
Thevenon, F., Williamson, D., Bard, E., Anselmetti, F.S., Beaufort, L., Cachier, H., (2010). Combining charcoal and elemental black carbon analysis in sedimentary archives: Implications for past fire regimes, the pyrogenic carbon cycle, and the human"climate interactions. Global and Planetary Change 72, 4 381389. 10.1016/j.gloplacha.2010.01.014.Google Scholar
Turner, R., Roberts, N., Jones, M.D., (2008). Climatic pacing of Mediterranean fire histories from lake sedimentary microcharcoal. Global and Planetary Change 63, 317324. 10.1016/j.gloplacha.2008.07.002(http://linkinghub.elsevier.com/retrieve/pii/S0921818108000787 ).Google Scholar
Turner, R., Roberts, N., Eastwood, W.J., Jenkins, E., Rosen, A., (2010). Fire, climate and the origins of agriculture: micro-charcoal records of biomass burning during the last glacial"interglacial transition in Southwest Asia. Journal of Quaternary Science 25, 371386. 10.1002/jqs.Google Scholar
Vanniere, B., Power, M.J., Roberts, N., Tinner, W., Carrion, J., Magny, M., Bartlein, P., Colombaroli, D., Daniau, A.-L., Finsinger, W., Gil-Romera, G., Kaltenrieder, P., Pini, R., Sadori, L., Turner, R., Valsecchi, V., Vescovi, E., (2011). Circum-Mediterranean fire activity and climate changes during the mid-Holocene environmental transition (8500–2500 cal. BP). The Holocene 21, 5373. 10.1177/0959683610384164(http://hol.sagepub.com/cgi/doi/10.1177/0959683610384164 ).CrossRefGoogle Scholar
Whitlock, C., Anderson, R.S., (2003). Fire history reconstructions based on sediment records from lakes and wetlands. Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W., Whitlock, C., Anderson, R.S. Fire and Climatic Change in Temperate Ecosystems of the Western Americas. Springer, New York.331.Google Scholar
Whitlock, C., Larsen, C., (2001). Charcoal as a fire proxy. Smol, J.P., Birks, H.J.B., Last, W.M. Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators KluwerAcademic Publishers, 123.Google Scholar
Wick, L., Lemcke, G., Sturm, M., (2003). Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. The Holocene 13, 665675. 10.1191/0959683603hl653rp(http://hol.sagepub.com/cgi/doi/10.1191/0959683603hl653rp ).CrossRefGoogle Scholar
Yasuda, Y., Kitagawa, H., Nakagawa, T., (2000). The earliest record of major anthropogenic deforestation in the Ghab Valley, northwest Syria: a palynological study. Quaternary International 73-74, 127136. 10.1016/S1040-6182(00)00069-0(http://linkinghub.elsevier.com/retrieve/pii/S1040618200000690 ).Google Scholar
Zohary, M.(1973). Geobotanical Foundations of the Middle East. vol. 2, Gustav Fischer Verlag, Stuttgart.Google Scholar
Supplementary material: File

Shumilovskikh et al. supplementary material

Table S1

Download Shumilovskikh et al. supplementary material(File)
File 696 Bytes