Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T12:44:06.823Z Has data issue: false hasContentIssue false

Vegetation and Climate of the Southern Chilean lake District During and Since the last Interglaciation

Published online by Cambridge University Press:  20 January 2017

Calvin J. Heusser*
Affiliation:
Dept. of Biology, New York University, Box 608, Tuxedo, New York 10987 USA.

Abstract

The palynology of stratigraphic sections from road-cut and gravel-pit exposures and from a fen and sphagnum bogs in the southern part of the Chilean lake district (40° 53′ S, 72°37′ W-41°24′ S, 72°53′ W) is the basis for interpreting vegetation and climate during the last interglaciation and glaciation (named Llanquihue Glaciation) and during the post-glacial. To help interpretation, modern pollen rain was studied in relation to vegetation and altitude along a transect on the west slope of the Andes, and average January (summer) temperatures were interpreted. The upper limit of closed Andean forest, where wind is a determinant, appears to be close to the 12°C January isotherm; parkland in southern Chile does not exceed the January isotherm of 9°C.

Grassland and later southern beech forest are evident during the interglaciation that is dated at more than 39,900 radiocarbon yr. Climate of the grassland was relatively dry; during the forest phase, it was wet, cool, and approximately the same as at present. During Llanquihue Glaciation, average January temperature is estimated to have been about 8°C colder than today at 19,450 BP, some 5° colder shortly before 36,300 BP, and around 4° colder at 10,000 BP. Antarctic-alpine tundra or parkland, under colder, drier climate, is mostly in evidence in the vicinity of the study sites before about 12,000 BP. During the postglacial, forest communities occupied the lake district, and temperatures there were probably 1–2°C above (by 6500 BP) and as much as 2° below (4500-0 BP) the present-day average of about 16°.

This pattern of climatic changes finds accord, in general terms, in other parts of the Southern Hemisphere where palynological, chronological, and glacial geological studies are reported. Postulated as a cause of these changes are shifts in the intensity of air mass circulation in antarctic latitudes.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeyda, A.F., Saez, S.F., (1958). Recopilación de datos climáticos de Chile y mapas sinópticos respectivos. Ministerio de Agricultura, Santiago.Google Scholar
Auer, V., (1958). The Pleistocene of Fuego-Patagonia. Part II. The history of the flora and vegetation. Annales Academiae Scientiarum Fennicae III. Geologica Geographica 50, 1239.Google Scholar
Auer, V., (1970). The Pleistocene of Fuego-Patagonia. Part V. Quaternary problems of southern South America. Annales Academiae Scientiarum Fennicae III. Geologica Geographica 100, 1194.Google Scholar
Berninger, O., (1929). Wald und offenes Land in Süd-Chile seit der spanischen Eroberung. Geographische Abhandlungen 3, 1130.Google Scholar
Brüggen, J., (1950). Fundamentos de la geología de Chile. Instituto Geográfico Militar, Santiago.Google Scholar
Costin, A.B., (1967). Alpine ecosystems of the Australasian region. Wright, H.E. Jr., Osborn, W.H., Arctic and Alpine Environments Indiana University Press, Bloomington 5587.Google Scholar
Faegri, K., Iversen, J., (1964). Textbook of Pollen Analysis. Munksgaard, Copenhagen.Google Scholar
Flint, R.F., Fidalgo, F., (1964). Glacial geology of the east flank of the Argentine Andes between latitude 39°10′ S and latitude 41°20′ S. Geological Society of America Bulletin 75, 335352.CrossRefGoogle Scholar
Flint, R.F., Fidalgo, F., (1969). Glacial drift in the eastern Argentine Andes between latitude 41°10′ S and latitude 43°10′ S. Geological Society of America Bulletin 80, 10431052.Google Scholar
Flohn, H., (1973). Antarctica and the global Cenozoic evolution: a geophysical model. Palaeoecology of Africa 8, 3753.Google Scholar
Frye, J.C., Williams, H.B., (1960). Classification of the Wisconsinan Stage in the Lake Michigan glacial lobe. Illinois State Geological Survey Circular 285, 16.Google Scholar
Galloway, R.W., Hope, G.S., Löffler, E., Peterson, J.A., (1973). Late Quaternary glaciation and periglacial phenomena in Australia and New Guinea. Palaeoecology of Africa 8, 125138.Google Scholar
Heusser, C.J., (1960). Late-Pleistocene environments of the Laguna de San Rafael area, Chile. Geographical Review 50, 555577.Google Scholar
Heusser, C.J., (1961). Some comparisons between climatic changes in northwestern North America and Patagonia. Annals of the New York Academy of Sciences 95, 642657.Google Scholar
Heusser, C.J., (1964). Some pollen profiles from the Laguna de San Rafael area, Chile. Cranwell, L.M., Ancient Pacific Floras, The Pollen Story University of Hawaii Press, Honolulu 95114.Google Scholar
Heusser, C.J., (1966a). Late-Pleistocene pollen diagrams from the Province of Llanquihue, southern Chile. American Philosophical Society Proceedings 110, 269305.Google Scholar
Heusser, C.J., (1966b). Polar hemispheric correlation: palynological evidence from Chile and the Pacific north-west of America. Sawyer, J.S., World Climate from 8000 to 0 B.C. Royal Meteorological Society, London 124141.Google Scholar
Heusser, C.J., (1971). Pollen and Spores of Chile. Modern Types of the Pteridophyta, Gymnospermae, and Angiospermae. University of Arizona Press, Tucson.Google Scholar
Heusser, C.J., (1972). An additional postglacial pollen diagram from Patagonia Occidental. Pollen et Spores 14, 157167.Google Scholar
Heusser, C.J., (1972b). On the occurrence of Lycopodium fuegianum during late-Pleistocene interstades in the Province of Osorno, Chile. Torrey Botanical Club Bulletin 99, 178184.Google Scholar
Hope, G.S., (1973). Vegetation history of the high New Guinea mountains. Ninth Congress International Union for Quaternary Research Abstracts. IX Congress International Union for Quaternary Research, Christchurch 154.Google Scholar
Lauer, W., (1968). Die Glaciallandschaft des südchilenischen Seegebietes. Acta Geographica 20, 215236.Google Scholar
Laugenie, C., (1971). Elementos de la cronología glaciar en los Andes chilenos meridionales. Cuadernos Geográficos del Sur 1, 720.Google Scholar
Laugenie, C., Mercer, J.H., (1973). Southern Chile: chronology of the last glaciation. Ninth Congress International Union for Quaternary Research Abstracts. IX Congress International Union for Quaternary Research, Christchurch 202203.Google Scholar
Lawrence, D.B., Lawrence, E.G., (1959). Recent glacier variations in southern South America. American Geographical Society Southern Chile Expedition 1959 Technical Report 1, 39.Google Scholar
Marticorena, C., (1961). Morfología de los granos de polen de las Polemoniaceae chilenas. Gayana 2, 512.Google Scholar
Marticorena, C., (1962). Morfología de los granos de polen de las Euphorbiaceae chilenas. Gayana 5, 312.Google Scholar
Marticorena, C., (1968). Granos de polen de plantas chilenas 1. Gayana 17, 166.Google Scholar
Mercer, J.H., (1968). Variations of some Patagonian glaciers since the late-glacial. American Journal of Science 266, 91109.CrossRefGoogle Scholar
Mercer, J.H., (1970). Variations of some Patagonian glaciers since the late-glacal: II. American Journal of Science 269, 125.Google Scholar
Mercer, J.H., (1972). Chilean glacial chronology 20,000 to 11,000 carbon-14 years ago: some global comparisons. Science 176, 11181120.CrossRefGoogle Scholar
Mercer, J.H., Laugenie, C., (1973). Glacier in Chile ended a major readvance about 36,000 years ago: some global comparisons. Science 182, 10171019.Google Scholar
Moar, N.T., (1971). Contributions to the Quaternary history of the New Zealand flora. 6. Aranuian pollen diagrams from Canterbury, Nelson, and North Westland, South Island. New Zealand Journal of Botany 9, 80145.Google Scholar
Moar, N.T., (1973). Late Pleistocene vegetation and environment in southern New Zealand. Palaeoecology of Africa 8, 179198.Google Scholar
Muñoz, P.C., (1966). Sinopsis de la Flora Chilena. Ediviones de la Universidad de Chile, Santiago.Google Scholar
Oberdorfer, E., (1960). Pflanzensoziologische Studien in Chile. Cramer, Weinheim.Google Scholar
Olivares, B., (1967). Las glaciaciones cuaternarias al oeste del Lago Llanquihue, en el sur de Chile. Revista Geográfica 67, 101108.Google Scholar
Parra, O., Marticorena, C., (1972). Granos de polen de plantas chilenas II. Compositae-Mutisieae. Gayana 21, 1107.Google Scholar
Reiche, K., (1907). Grundzüge der Pflanzenverbreitung in Chile. Die Vegetation der Erde 8, 1374.Google Scholar
Schmithüsen, J., (1960). Die Nadelhölzer in den Waldgesellschaften der südlichen Anden. Vegetatio 9, 313327.Google Scholar
Suggate, R.P., Moar, N.T., (1970). Revision of the chronology of the late Otira glacial. New Zealand Journal of Geology and Geophysics 13, 742746.Google Scholar
Thomasson, K., (1963). Araucanian lakes. Plankton studies in North Patagonia, with notes on terrestrial vegetation. Acta Geographica Suecica 47, 139.Google Scholar
Van der Hammen, T., Gonzalez, E., (1960a). Upper Pleistocene and Holocene climate and vegetation of the Sabana de Bogotá (Colombia, South America). Leidse Geologische Mededelingen 25, 261315.Google Scholar
Van der Hammen, T., Gonzalez, E., (1960b). Holocene and late-glacial climate and vegetation of Páramo de Palacio (Eastern Cordillera, Colombia, South America). Geologie en Mijnbouw 39, 737745.Google Scholar
Van der Hammen, T., Gonzalez, E., (1965). A late-glatial and Holocene pollen diagram from Cienaga del Visidor (Dept. Boyaca, Colombia). Leidse Geologische Mededelingen 32, 193201.Google Scholar
Van Zinderen Bakker, E.M. Sr., (1973). The glaciation(s) of Marion Island (Sub-Antaretic). Palaeoecology of Africa 8, 161178.Google Scholar
Weischet, W., (1958). Studien über den glazial bedingten Formenschatz der südchilenischen Längssenke im West-Ost Profil beiderseits Osorno. Petermanns Geographische Mitteilungen 102, 161172.Google Scholar
Weischet, W., (1964). Geomorfología glacial de la region de los lagos. Comunicaciones de la Escuela de Geología 4, 36.Google Scholar
Wilson, A.T., Hendy, C.H., (1973). Climatic implications of the isotopic ratio profiles through the polar ice caps. Paleoecology of Africa 8, 115124.Google Scholar
Young, S.B., Schofield, E.K., (1973a). Palynological evidence for the late glacial occurrence of Pringlea and Lyallia on Kerguelen Islands. Rhodora 75, 239247.Google Scholar
Young, S.B., Schofield, E.K., (1973b). Pollen evidence for late Quaternary climate changes on Kerguelen Islands. Nature (London) 245, 311312.Google Scholar
Zeil, W., (1964). Geologie von Chile. Borntraeger, Berlin.Google Scholar