Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T14:34:36.215Z Has data issue: false hasContentIssue false

Variations in Sediment Yield from the Upper Doubs River Carbonate Watershed (Jura, France) since the Late-Glacial Period

Published online by Cambridge University Press:  20 January 2017

Vincent Bichet
Affiliation:
UMR 5561 CNRS, Centre des Sciences de la Terre, Université de Bourgogne, 6 boulevard Gabriel, 21000, Dijon, France
Michel Campy
Affiliation:
UMR 5561 CNRS, Centre des Sciences de la Terre, Université de Bourgogne, 6 boulevard Gabriel, 21000, Dijon, France
Jean-François Buoncristiani
Affiliation:
UMR 5561 CNRS, Centre des Sciences de la Terre, Université de Bourgogne, 6 boulevard Gabriel, 21000, Dijon, France
Christian Digiovanni
Affiliation:
Laboratoire de Géologie-Environnement, Université de Tours, Parc Grandmont, 31200, Tours, France
Michel Meybeck
Affiliation:
URA 1367 CNRS, Laboratoire de Géologie Appliquée, Université de Paris VI, 4 place Jussieu, 75252, Paris cedex 05, France
Hervé Richard
Affiliation:
UMR 9946 CNRS, Laboratoire de Chrono-Ecologie, Université de Franche-Comté, 16 route de Gray, 25030, Besançon cedex, France

Abstract

The Upper Doubs River Valley is a 910-km2watershed feeding into Lake Chaillexon. The lake was formed by a natural rockfall at the end of the Bølling Chronozone (around 14,250 cal yr B.P.) and since then has trapped material eroded from the watershed. The filling process and variations in sediment yield have been investigated by mechanical coring, seismic surveys, and electric soundings. The detrital sediment yield of the upstream watershed can be calculated by quantifying the sedimentary stocks for each climatic stage of the Late-Glacial period and Holocene Epoch and estimating the lake's entrapment capacity. This enables us to determine the intensity of the erosion processes in relation to climate and environmental factors. The Bølling–Allerød Interstade produced the greatest yields with mean values of 19,500 metric tons per calendar year (t/yr). The Younger Dryas Chronozone saw a sharp fall (8900 t/yr) that continued into the Preboreal (2100 t/yr). Clastic supply increased during the Boreal (4500 t/yr) before declining again in the Early Atlantic (2400 t/yr). Since then, yields have risen from 4500 t/yr in the Late Atlantic to 6800 t/yr in the Subboreal and 11,100 t/yr in the Subatlantic. Comparison of quantitative data with the qualitative analysis of the deposits and with the paleohydrologic curve of the watershed based on level fluctuations in lakes around Chaillexon shows that climate was the controlling factor of sediment yield until the Late Atlantic. From the Late Atlantic–Subboreal around 5400 cal yr B.P. (470014C yr B.P.) and especially from the end of the Subboreal Chronozone and during the Subatlantic Chronozone (2770 cal yr B.P./270014C yr B.P.–present) climatic constraints have been compounded by human activity related to forest clearing and land use.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beaulieu (de), J.L., Richard, H., Ruffaldi, P., Clerc, J., (1994). History of vegetation, climate and human action in the French Alps and the Jura over the last 15,000 years. Dissertationes Botanicae 234, 253275.Google Scholar
Bichet, V., (1997). Impact des contraintes environnementales sur la production sédimentaire d'un bassin versant jurassien au cours du Postglaciaire. Le système limnologique de Chaillexon (Doubs–France).Google Scholar
Boardman, J., Foster, I.D.L., Dearing, J.A., (1990). Soil Erosion on Agricultural Land. Wiley and Sons, New York.Google Scholar
Bossuet, G., Ruffaldi, P., Magny, M., Richard, H., Mouthon, J., (1996). Dynamique et approche quantitative des remplissages fini- et postwürmiens du bassin lacustre de Cerin (Jura, France). Bulletin de la Société Géologique de France 167, 483494.Google Scholar
Bruckert, S., Gaiffe, M., (1990). Les systèmes de subsurface sols roches, modèles de pédogénèses. Exemples des domaines karstiques et non karstiques de Franche Comté. Sciences du Sol 28, 319332.Google Scholar
Brune, G.M., (1953). Trap efficiency of reservoirs. Transactions, American Geophysical Union 34, 407418.Google Scholar
Buoncristiani, J.F., Bichet, V., Bossuet, G., Campy, M., (1996). Contribution des méthodes géophysiques (sismique réfraction et électrique), à l'identification des corps sédimentaires du remplissage lacustre de Chaillexon (Doubs, France). Eclogae Geologicae Helvetiae 82, 677694.Google Scholar
Campy, M., (1982). Le Quaternaire Franc-Comtois. Essai chronologique et paléoclimatique.Google Scholar
Campy, M., Arn, R., (1991). The Jura glacier: Paleogeography in the würmien circum-alpine zone. Boreas 20, 1727.Google Scholar
Campy, M., Bichet, V., Di Giovanni, C., Richard, H., Richard, J., Olive, Ph., (1994). Evolution of the matter fluxes since 12,000 years in the high Doubs valley (France). Bulletin de la Société Géologique de France 165, 381400.Google Scholar
Campy, M., Buoncristiani, J.F., Bichet, V., (1998). Sediment yield from glacolacustrine calcareous deposits during the postglacial period in the Combe d'Ain (Jura, France). Earth Surface Processes and Landforms 23, 429444.Google Scholar
Chen, C.N., (1975). Design of sediment retention basins. Proceedings of the National Symposium on Urban Hydrology and Sediment Control. Univ. of Kentucky, Lexington.p. 5868.Google Scholar
Church, M., Ryder, J.M., (1972). Paraglacial sedimentation: A consideration of fluvial processes conditioned by glaciation. Geological Society of America Bulletin 83, 30593072.CrossRefGoogle Scholar
Cupillard, C., Magny, M., Richard, H., Ruffaldi, P., Marguier, S., (1994). Mésolithisation et néolithisation d'une zone de moyenne montagne: Évolution du peuplement et du paysage de la haute vallée du Doubs. In, Rapport Action Thématique Programmée “Archéologie Métropolitaine .Google Scholar
Davies, J.C., (1986). Statistics and Data Analysis in Geology. Wiley & Sons, New York.Google Scholar
Di Giovanni, C., (1994). Production, flux et stocks de matière organique dans un système limnologique au cours du post-glaciaire. Le bassin de Chaillexon (Doubs–France).Google Scholar
Di Giovanni, C., Bertrand, P., Campy, M., Disnar, J.R., (1997). Contribution de matière organique méso-cénozoı̈que dans un flux organique terrigène tardi et post-glaciaire (bassin de Chaillexon, Doubs, France). Bulletin de la Société Géologique de France 168, 8392.Google Scholar
Evin, J., (1989). Temps carbone 14 et temps réel pour la correction dendrochronologique des dates carbone 14. Le temps de la Préhistoire. p. 213217.Google Scholar
Gaillard, M.J., Moulin, B., (1989). New results on the late-glacial history and environment of the Lake of Neuchâtel (Switzerland). Sedimentological and palynological investigations at the Paleolithic site of Hauterive-Champréveyres. Eclogae Geologicae Helvetiae 82, 203218.Google Scholar
Heinemann, H.G., (1984). Reservoir trap efficiency. Hadley, R.F., Walling, D.E. Erosion and Sediment Yield: Some Methods of Measurement and Modelling Geobooks, Norwich.201218.Google Scholar
Lelong, F., Dupraz, C., Durand, P., Didon-Lescot, J.F., (1990). Effects of vegetation type on the biogeochemistry of small catchments (Mont Lozère, France). Journal of Hydrology 116, 125145.CrossRefGoogle Scholar
Magny, M., (1991). Une approche paléoclimatique de l'Holocène: les fluctuations des lacs du Jura et des Alpes du nord françaises.Google Scholar
Magny, M., (1994). Solar influence on Holocene climatic changes illustrated by correlations between past lake-level fluctuations and the atmospheric14 . Quaternary Research 40, 19.Google Scholar
Magny, M., Errance, , (1995). Une histoire du climat. Des derniers mammouths au siècle de l'automobile.Google Scholar
Matheron, G., (1971). La théorie des variables régionalisées et ses applications.Google Scholar
Richard, H., (1983). Nouvelles contributions à l'histoire de la végétation franc-comtoise tardiglaciaire et holocène, à partir des données de la palynologie.Google Scholar
Ruffaldi, P., (1993). Histoire de la végétation du Jura méridional depuis le retrait du glacier würmien, à partir des analyses palynologiques du lac de Cerin (Ain, France.Google Scholar
Schardt, H., (1903). Note sur l'origine du lac des Brenets. Bulletin de la Société Neuchateloise des Sciences Naturelles XXXI, 310331.Google Scholar
Stuiver, M., Braziunas, T., (1993). Modeling atmospheric14 14 . Radiocarbon 35, 137189.Google Scholar
Sundborg, A., (1986). Problèmes d'érosion, transport solide et sédimentation dans les bassins versants. Etudes et Rapports d'Hydrologie 35, .Google Scholar
Svendsen, J.I., Mangerud, J., Miller, G.H., (1989). Denudation rates in the Artic estimated from lake sediment on Spitsberg, Svalbard. Palaeogeology, Palaeoclimatology, Palaeoecology 76, 153168.CrossRefGoogle Scholar
Wegmüller, S., Huber, Verlag H., (1966). Uber die Spät und postglaziale Vegetationgeschischte des Südwestichen Jura.Google Scholar