Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T15:12:06.713Z Has data issue: false hasContentIssue false

Variable sequence of events during the past seven terminations in two deep-sea cores from the Southern Ocean

Published online by Cambridge University Press:  20 January 2017

Aya Schneider Mor*
Affiliation:
Weizmann Institute of Science, P.O. Box 26, 76100 Rehovot, Israel
Ruth Yam
Affiliation:
Weizmann Institute of Science, P.O. Box 26, 76100 Rehovot, Israel
Cristina Bianchi
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, P.O. Box 120161 Columbusstrasse, 27515 Bremerhaven, Germany
Martina Kunz-Pirrung
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, P.O. Box 120161 Columbusstrasse, 27515 Bremerhaven, Germany
Rainer Gersonde
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, P.O. Box 120161 Columbusstrasse, 27515 Bremerhaven, Germany
Aldo Shemesh
Affiliation:
Weizmann Institute of Science, P.O. Box 26, 76100 Rehovot, Israel
*
*Corresponding author at: Stanford University, 367 Panama St., Stanford, CA 94305, USA. E-mail address:[email protected] (A. Schneider Mor).

Abstract

The relationships among internally consistent records of summer sea-surface temperature (SSST), winter sea ice (WSI), and diatomaceous stable isotopes were studied across seven terminations over the last 660 ka in sedimentary cores from ODP sites 1093 and 1094. The sequence of events at both sites indicates that SSST and WSI changes led the carbon and nitrogen isotopic changes in three Terminations (TI, TII and TVI) and followed them in the other four Terminations (TIII, TIV, TV and TVII). In both TIII and TIV, the leads and lags between the proxies were related to weak glacial mode, while in TV and TVII they were due to the influence of the mid-Pleistocene transition. We show that the sequence of events is not unique and does not follow the same pattern across terminations, implying that the processes that initiated climate change in the Southern Ocean has varied through time.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R.F. Chase, Z. Fleisher, M.Q. Sachs, J. 2002, The Southern Ocean's biological pump during the Last Glacial Maximum. Deep-Sea Research Part II — Topical Studies in . Oceanography 49, 19091938.Google Scholar
Archer, D.E. Johnson, K. 2000, A model of the iron cycle in the ocean. Global Biogeochemical Cycles 14, 269279.Google Scholar
Becquey, S. Gersonde, R. 2003, A 0.55-Ma paleotemperature records from the Subantarctic zone: implications for Antarctic Circumpolar Current development. Paleoceanography 18, 2000PA000576.Google Scholar
Bianchi, C. Gersonde, R. 2004, Climate evolution at the last deglaciation: the role of the Southern Ocean. Earth and Planetary Science Letters 228, 407424.Google Scholar
Broecker, W.S. 1984, Terminations. Berger, A. Imbrie, J. Hays, J.D. Kukla, G. Saltzman, E. Milankovitch and Climate. D. Reidel Publishing Company New York 687698.Google Scholar
Broecker, W.S. Denton, G.H. 1989, The role of ocean–atmosphere reorganizations in glacial cycle. Geochimica et Cosmochimica Acta 53, 24652501.Google Scholar
Broecker, W.S. Henderson, G.M. 1998, The sequence of events surrounding Termination II and their implications for the cause of glacial–interglacial CO2 changes. Paleoceanography 13, 352364.Google Scholar
Broecker, W.S. Peng, T.H. 1989, The cause of the glacial to interglacial atmospheric CO2 change: a polae alkalinity hypotesis. Global Biogeochemical Cycles 3, 215239.Google Scholar
Brzezinski, M.A. Pride, C.J. Franck, V.M. Sigman, D.M. Gruber, N. Rau, G.H. Coale, K.H. 2002, A switch from Si(OH)4 to NO3 depletion in the glacial Southern Ocean. Geophysical Research Letters 29, 1564 10.1029/2001GL014349 Google Scholar
Charles, C.D. Pahnke, K. Zahn, R. Mortyn, P.G. Ninnemann, U. Hodell, D.A. 2010, Millennial scale evolution of the Southern Ocean chemical divide. Quaternary Science Reviews 29, 399409.Google Scholar
Cortese, G. Abelmann, A. Gersonde, R. 2007, The last five glacial–interglacial transitions: a high-resolution 450,000 year record from the subantarctic Atlantic Paleoceanography 22, PA4203 10.1029/2007PA001457 Google Scholar
Cronin, T.M. Smith, S.A. Eynaud, F. Oregan, M. King, J. 2008, Quaternary Paleoceanograpy of the central Arctic based on Integrated Ocean Drilling Program Arctic Coring Expedition 302 foraminiferal assemblages. Paleoceanography 23, PA1S18 10.1029/2007PA001484 Google Scholar
Crosta, X. Shemesh, A. 2002, Reconciling down core anticorrelation of diatom carbon and nitrogen isotopic ratios from the Southern Ocean. Paleoceanography 17, 1010 10.1029/2000PA000565 Google Scholar
Crosta, X. Sturm, A. Armand, L. Pichon, J.J. 2004, Late Quaternary sea ice history in the Indian sector of the Southern Ocean as recorded by diatom assemblages. Marine Micropaleontology 50, 209223.Google Scholar
Crundwell, M. Scott, G. Naish, T. Carter, L. 2008, Glacial–interglacial ocean climate variability from planktonic foraminifera during the Mid-Pleistocene transition in the temperate Southwest Pacific, ODP Site 1123. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 202229.CrossRefGoogle Scholar
EPICA community members, 2004, Eight glacial cycles from an Antarctic ice core. Nature 429, 623628.Google Scholar
Francois, R. Altabet, M.A. Yu, E.F. Sigman, D.M. Bacon, M.P. Frank, M. Bohrmann, G. Bareille, G. Labeyrie, L.D. 1997, Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389, 929935.CrossRefGoogle Scholar
Fritsch, F.N. Carlson, R.E. 1980, Monotone piecewise cubic interpolation. SIAM Journal on Numerical Analysis 17, 238246.Google Scholar
Gersonde, R. Zielinski, U. 2000, The reconstruction of late Quaternary Antarctic sea-ice distribution — the use of diatoms as a proxy for sea-ice. Palaeogeography, Palaeoclimatology, Palaeoecology 162, 263286.Google Scholar
Gersonde, R. Hodell, D.A. Blum, P. 1999,Proceedings of the Ocean Drilling Program Ocean Drilling Program, College Station Texas pp. onlinehttp://odp.pangaea.de/publications/177_IR/177ir.htm.Google Scholar
Gildor, H. Tziperman, E. 2000, Sea ice as the glacial cycles' climate switch: role of seasonal and orbital forcing. Paleoceanography 15, 605615.Google Scholar
Gildor, H. Tziperman, E. 2001, A sea ice climate switch mechanism for the 100-kyr glacial cycles. Journal of Geophysical Research 106, 91179133.Google Scholar
Hall, I.R. McCave, I.N. Shackleton, N.J. Weedon, G.P. Harris, S.E. 2001, Intensified deep Pacific inflow and ventilation in Pleistocene glacial times. Nature 412, 809812.Google Scholar
Hays, J.D. Imbrie, J. Shackleton, N.J. 1976, Variations in the Earth's orbit: pacemaker of ice ages. Science 194, 11211132.Google Scholar
Helmke, J.P. Bauch, H.A. 2003, Comparison of glacial and interglacial conditions between the polar and subpolar North Atlantic region over the last five climatic cycles. Paleoceanography 18, 1036 10.1029/2002PA000794 Google Scholar
Hodell, D.A. Charles, C.D. Curtis, J.H. Mortyn, P.G. Ninnemann, U.S. Venz, K. Hodell, D.A.B. 2003, Data Report: Oxygen Isotope Stratigraphy of ODP Leg 177 Sites 1088, 1089, 1090, 1093, and 1094. .Google Scholar
Imbrie, J. Imbrie, J.Z. 1980, Modeling the climatic response of orbital variations. Science 207, 943953.Google Scholar
Imbrie, J. Kipp, N.G. 1971, A new micropaleontological method for quantitative paleoclimotology: application to a Late Pleistocene Caribbean core. Tuerkian, K.K. The Late Cenozoic Glacial age. Yale University New Haven 71181.Google Scholar
Imbrie, J. Boyle, E.A. Clemens, S.C. Duffy, A. Howard, W.R. Kukla, G. Kutzbach, J. Martinson, D. McIntyre, A. Mix, A.C. Molfino, B. Morley, J.J. Peterson, L.C. Pisias, N.G. Prell, W.L. Raymo, M.E. Shackleton, N.J. Toggweiler, J.R. 1992, On the structure and origin of major glaciation cycles 1. Linear response to Milankovitch forcing. Paleoceanography 7, 701738.Google Scholar
Imbrie, J. Berger, A. Boyle, E.A. Clemens, S.C. Duffy, A. Howard, W.R. Kukla, G. Kutzbach, J. Martinson, D.G. McIntyre, A. Mix, A.C. Molfino, B. Morley, J.J. Peterson, L.C. Pisias, N.G. Prell, W.L. Raymo, M.E. Shackleton, N.J. Toggweiler, J.R. 1993, On the structure and origin of major glaciation cycles.2. The 100,000year cycle Paleoceanography 8, 699735.Google Scholar
Jouzel, J. Masson-Delmotte, V. Cattani, O. Dreyfus, G. Falourd, S. Hoffmann, G. Minster, B. Nouet, J. Barnola, J.M. Chappellaz, J. Fischer, H. Gallet, J.C. Johnsen, S. Leuenberger, M. Loulergue, L. Luethi, D. Oerter, H. Parrenin, F. Raisbeck, G. Raynaud, D. Schilt, A. Schwander, J. Selmo, E. Souchez, R. Spahni, R. Stauffer, B. Steffensen, J.P. Stenni, B. Stocker, T.F. Tison, J.L. Werner, M. Wolff, E.W. 2007, Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793796.Google Scholar
Knorr, G. Lohmann, G. 2003, Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature 424, 532536.Google Scholar
Knorr, G. Lohmann, G. 2007, Rapid transitions in the Atlantic thermohaline circulation triggered by global warming and meltwater during the last deglaciation. Geochemistry, Geophysics, Geosystems 8, Q12006 10.1029/2007GC001604 Google Scholar
Lambert, F. Delmonte, B. Petit, J.R. Bigler, M. Kaufmann, P.R. Hutterli, M.A. Stocker, T.F. Ruth, U. Steffensen, J.P. Maggi, V. 2008, Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452, 616619.CrossRefGoogle Scholar
Lisiecki, L.E. Raymo, M.E. 2005, A Pliocene–Pleistocene stack of 57 globally distributed bentic δ18O records. Paleoceanography 20, PA1003 10.1029/2004PA001071 Google Scholar
Markovic, S.B. Oches, E.A. McCoy, W.D. Frechen, M. Gaudenyi, T. 2007, Malacological and sedimentological evidence for “warm” glacial climate from the Irig loess sequence, Vojvodina, Serbia. Geochemistry Geophysics Geosystems 8, .Google Scholar
Micolajewicz, U. 1998, Effect of meltwater input from the Antartic ice sheet on the thermohaline circulation. Annals of Glaciology 27, 311320.Google Scholar
Mudelsee, M. Stattegger, K. 1997, Exploring the structure of the mid-Pleistocene revolution with advanced methods of time series analysis. Geologische Rundschau 86, 499511.CrossRefGoogle Scholar
Ninnemann, U.S. Charles, C.D. 1997, Regional differences in quaternary subantartic nutreint cycling: link to intermediate and deep water ventilation. Paleoceanography 12, 560567.Google Scholar
Ninnemann, U.S. Charles, C.D. 2002, Changes in the mode of Southern Ocean circulation over the last glacial cycle revealed by foraminiferal stable isotopic variability. Earth and Planetary Science Letters 201, 383396.Google Scholar
Oppo, D.W. Horowitz, M. 2000, Glacial deep water geometry: South Atlantic benthic foraminiferal Cd/Ca and delta C-13 evidence. Paleoceanography 15, 147160.Google Scholar
Oppo, D.W. Lehman, S.J. 1993, Mid-depth circulation of the subpolar North-Atlantic during the Last Glacial Maximum. Science 259, 11481152.Google Scholar
Paillard, D. Parrenin, F. 2004, The Antarctic ice sheet and the triggering of deglaciations. Earth and Planetary Science Letters 227, 263271.Google Scholar
Parrenin, F. R'emy, F. Ritz, C. Siegert, M.J. Jouzel, J. 2004, New modeling of the Vostok ice flow line and implication for the glaciological chronologt of the Vostok ice core. Journal of Geophysical Research 109, D20102 10.1029/2004JD004561 Google Scholar
Parrenin, F. Barnola, J.M. Beer, J. Blunier, T. Castellano, E. Chappellaz, J. Dreyfus, G. Fischer, H. Fujita, S. Jouzel, J. Kawamura, K. Lemieux-Dudon, B. Loulergue, L. Masson-Delmotte, V. Narcisi, B. Petit, J.R. Raisbeck, G. Raynaud, D. Ruth, U. Schwander, J. Severi, M. Spahni, R. Steffensen, J.P. Svensson, A. Udisti, R. Waelbroeck, C. Wolff, E. 2007, The EDC3 chronology for the EPICA dome C ice core. Climate of the Past 3, 485497.Google Scholar
Petit, J.R. Jouzel, J. Raynaud, D. Barkov, N.I. Barnola, J.M. Basile, I. Bender, M. Chappellaz, J. Davis, M. Delaygue, G. Delmotte, M. Kotlyakov, V.M. Legrand, M. Lipenkov, V.Y. Lorius, C. Pepin, L. Ritz, C. Saltzman, E. Stievenard, M. 1999, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.Google Scholar
Raymo, M.E. 1997, The timing of major climate terminations. Paleoceanography 12, 577585.Google Scholar
Raymo, M.E. Oppo, D. Curry, W. 1997, The mid-Pleistocene climate transition: a deep sea carbon isotopic prespective. Paleoceanography 12, 546559.Google Scholar
Raymo, M.E. Oppo, D.W. Flower, B.P. Hodell, D.A. McManus, J.F. Venz, K.A. Kleiven, K.F. McIntyre, K. 2004, Stability of North Atlantic water masses in face of pronounced climate variability during the Pleistocene. Paleoceanography 19, PA2008 10.1029/2003PA000921 Google Scholar
Robinson, R.S. Sigman, D.M. 2008, Nitrogen isotopic evidence for a poleward decrease in surface nitrate within the ice age Antarctic. Quaternary Science Reviews 27, 10761090.Google Scholar
Robinson, R.S. Brunelle, B.G. Sigman, D.M. 2004, Revisiting nutrient utilization in the glacial Antarctic: evidence from a new method for diatom-bound N isotopic analysis. Paleoceanography 19, PA3001 10.1029/2003PA000996 Google Scholar
Rothlisberger, R. Mudelsee, M. Bigler, M. de Angelis, M. Fischer, H. Hansson, M. Lambert, F. Masson-Delmotte, V. Sime, L. Udisti, R. Wolff, E.W. 2008, The Southern Hemisphere at glacial terminations: insights from the Dome C ice core. Climate of the Past 4, 345356.Google Scholar
Ruddiman, W.F. Raymo, M.E. Martinson, D. Clement, A.C. Backman, J. 1989, Pliestocene evolution: Northern Hemisphere ice sheet and North Atlantic Ocean. Paleoceanography 4, 353412.Google Scholar
Rutberg, R.L. Hemming, S.R. Goldstein, S.L. 2000, Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios. Nature 405, 935938.Google Scholar
Sarmiento, J.L. Toggweiler, J.R. 1984, A new model for the role of the oceans in detrmining atmospheric pCO2 . Nature 308, 621624.Google Scholar
Sarmiento, J.L. Gruber, N. Brzezinski, M.A. Dunne, J.P. 2004, High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 5660.Google Scholar
Schneider-Mor, A. Yam, R. Bianchi, C. Kunz-Pirrung, M. Gersonde, R. Shemesh, A. 2005, Diatom stable isotopes, sea ice presence and sea surface temperature records of the past 640 ka in the Atlantic sector of the Southern Ocean. Geophysical Research Letters 32, L10704 10.1029/2005GL022543 Google Scholar
Schneider-Mor, A. Yam, R. Bianchi, C. Kunz-Pirrung, M. Gersonde, R. Shemesh, A. 2008, The nutrient regime at the siliceous belt of the Atlantic sector of the Southern Ocean during the past 660 kyr. Paleoceanography PA3217 10.1029/2007PA001466 Google Scholar
Shackleton, N.J. 1987, Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews 6, 183190.CrossRefGoogle Scholar
Shemesh, A. Hodell, D.A. Kanfoush, S.L. Charles, C.D. Guilderson, T.P. 2002, The sequence of events during the last deglaciation in Southern Ocean sediments and Antarctic ice cores. Paleoceanography 17, 1056 10.1029/2000PA000599 Google Scholar
Shin, S.I. Liu, Z.G. Otto-Bliesner, B.L. Kutzbach, J.E. Vavrus, S.J. 2003, Southern Ocean sea-ice control of the glacial North Atlantic thermohaline circulation. Geophysical Research Letters 30, 1096 10.1029/2002GL015513 Google Scholar
Sigman, D.M. Boyle, E.A. 2000, Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859869.Google Scholar
Sigman, D.M. Altabet, M.A. Francois, R. McCorkle, D.C. Gaillard, J.F. 1999, The isotopic composition of diatom-bound nitrogen in Southern Ocean sediments. Paleoceanography 14, 118134.Google Scholar
Singer, A.J. Shemesh, A. 1995, Climatically linked carbon isotope variation during the past 430,000 years in Southern Ocean sediments. Paleoceanography 10, 171177.CrossRefGoogle Scholar
Stephens, B.B. Keeling, R.F. 2000, The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature 404, 171174.Google Scholar
Sun, Y. Chen, J. Clemens, S.C. Liu, Q.S. Ji, J.F. Tada, R. 2006, East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau. Geochemistry, Geophysics, Geosystems 7, Q12Q02 10.1029/2006GC001287 Google Scholar
Toggweiler, J.R. 1999, Variation of atmospheric CO2 by ventilation of the ocean's deepest water. Paleoceanography 14, 571588.Google Scholar
Toggweiler, J.R. 2008, Origin of the 100,000-year timescale in Antarctic temperatures and atmospheric CO2. Paleoceanography 23, PA2211 10.1029/2006PA001405 Google Scholar
Vaks, A. Bar-Matthews, M. Ayalon, A. Matthews, A. Frumkin, A. Dayan, U. Halicz, L. Almogi-Labin, A. Schilman, B. 2006, Paleoclimate and location of the border between Mediterranean climate region and the Saharo-Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth and Planetary Science Letters 249, 384399.CrossRefGoogle Scholar
Wang, Y.J. Cheng, H. Edwards, R.L. Kong, X.G. Shao, X.H. Chen, S.T. Wu, J.Y. Jiang, X.Y. Wang, X.F. An, Z.S. 2008, Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, 10901093.Google Scholar
Winckler, G. Anderson, R.F. Schlosser, P. 2005, Equatorial Pacific productivity and dust flux during the mid-Pleistocene climate transition. Paleoceanography 20, PA4025 10.1029/2005PA001177 Google Scholar
Wolff, E.W. Fischer, H. Fundel, F. Ruth, U. Twarloh, B. Littot, G.C. Mulvaney, R. Rothlisberger, R. de Angelis, M. Boutron, C.F. Hansson, M. Jonsell, U. Hutterli, M.A. Lambert, F. Kaufmann, P. Stauffer, B. Stocker, T.F. Steffensen, J.P. Bigler, M. Siggaard-Andersen, M.L. Udisti, R. Becagli, S. Castellano, E. Severi, M. Wagenbach, D. Barbante, C. Gabrielli, P. Gaspari, V. 2006, Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440, 491496.Google Scholar