Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-18T16:08:36.859Z Has data issue: false hasContentIssue false

Using 10Be dating to determine when the Cordilleran Ice Sheet stopped flowing over the Canadian Rocky Mountains

Published online by Cambridge University Press:  05 March 2021

Helen E. Dulfer*
Affiliation:
Department of Physical Geography and Geoecology, Faculty of Science, Charles University in Prague, Albertov 6, 12800Praha, Czech Republic.
Martin Margold
Affiliation:
Department of Physical Geography and Geoecology, Faculty of Science, Charles University in Prague, Albertov 6, 12800Praha, Czech Republic.
Zbynĕk Engel
Affiliation:
Department of Physical Geography and Geoecology, Faculty of Science, Charles University in Prague, Albertov 6, 12800Praha, Czech Republic.
Régis Braucher
Affiliation:
CEREGE, Aix-Marseille Univ., CNRS-IRD- Coll. De France-INRAE UM 34, 13545 Aix-en-Provence Cedex 4, France Aster Team: Georges Aumaître, Didier Bourlès, Karim Keddadouche
Aster Team
Affiliation:
CEREGE, Aix-Marseille Univ., CNRS-IRD- Coll. De France-INRAE UM 34, 13545 Aix-en-Provence Cedex 4, France Aster Team: Georges Aumaître, Didier Bourlès, Karim Keddadouche
*
*Corresponding author: Helen E. Dulfer, Email:[email protected]

Abstract

During the last glacial maximum the Cordilleran and Laurentide ice sheets coalesced east of the Rocky Mountains and geomorphological evidence indicates ice flowed over the main ridge of the Rocky Mountains between ~54–56°N. However, this ice flow has thus far remained unconstrained in time. Here we use in situ produced cosmogenic 10Be dating to determine when Cordilleran ice stopped flowing over the mountain range. We dated eight samples from two sites: one on the western side (Mount Morfee) and one on the eastern side (Mount Spieker) of the Rocky Mountains. At Mount Spieker, one sample is rejected as an outlier and the remaining three give an apparent weighted mean exposure age of 15.6 ± 0.6 ka. The four samples at Mount Morfee are well clustered in time and give an apparent weighted mean exposure age of 12.2 ± 0.4 ka. These ages indicate that Mount Spieker became ice free before the Bølling warming and that the western front of the Rocky Mountains (Mount Morfee) remained in contact with the Cordilleran Ice Sheet until the Younger Dryas.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Suwaidi, M., Ward, B.C., Wilson, M.C., Hebda, R.J., Nagorsen, D.W., Marshall, D., Ghaleb, B., Wigen, R.J., Enkin, R.J., 2006. Late Wisconsian Port Eliza cave deposits and their implications for human coastal migration, Vancouver Island, Canada. Geoarchaeology 21, 307332. https://doi.org/10.1002/gea.20106.CrossRefGoogle Scholar
Alder, J.R., Hostetler, S.W., 2015. Global climate simulations at 3000-year intervals for the last 21 000 years with the GENMOM coupled atmosphere-ocean model. Climate of the Past 11, 449471. https://doi.org/10.5194/cp-11-449-2015.CrossRefGoogle Scholar
Atkinson, N., Pawley, S., Utting, D.J., 2016. Flow-pattern evolution of the Laurentide and Cordilleran ice sheets across west-central Alberta, Canada: implications for ice sheet growth, retreat and dynamics during the last glacial cycle. Journal of Quaternary Science 31, 753768. https://doi.org/10.1002/jqs.2901.CrossRefGoogle Scholar
Balco, G., 2020. Glacier change and paleoclimate applications of cosmogenic-nuclide exposure dating. Annual Review of Earth and Planetary Sciences 48, 2148. https://doi.org/10.1146/annurev-earth-081619-052609.CrossRefGoogle Scholar
Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible means of calculation surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195. https://doi.org/10.1016/j.quageo.2007.12.001.CrossRefGoogle Scholar
Bednarski, J.M., Smith, I.R., 2007. Laurentide and montane glaciation along the Rocky Mountain Foothills of northeastern British Columbia. Canadian Journal of Earth Sciences 44, 445457. https://doi.org/10.1139/e06-095.CrossRefGoogle Scholar
Blaise, B., Clague, J.J., Mathewes, R.W., 1990. Time of maximum Late Wisconsin glaciation, west coast of Canada. Quaternary Research 34, 282295. https://doi.org/10.1016/0033-5894(90)90041-I.CrossRefGoogle Scholar
Blomdin, R., Stroeven, A.P., Harbor, J.M., Lifton, N.A., Heyman, J., Gribenski, N., Petrakov, , et al. , 2016. Evaluating the timing of former glacier expansions in the Tian Shan: A key step towards robust spatial correlations. Quaternary Science Reviews 153, 7896. https://doi.org/10.1016/j.quascirev.2016.07.029.CrossRefGoogle Scholar
Bobrowsky, P., Rutter, N.W., 1992. The Quaternary Geologic History of the Canadian Rocky Mountains. Géographie physique et Quaternaire 46, 550. https://doi.org/10.7202/032887ar.CrossRefGoogle Scholar
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., Stone, J., 2016. Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology 31, 188198. https://doi.org/10.1016/j.quageo.2015.01.009.CrossRefGoogle Scholar
Braucher, R., Guillou, V., Bourlès, D.L., Arnold, M., Aumaître, G., Keddadouche, K., Nottoli, E., 2015. Preparation of ASTER in-house10Be/9Be standard solutions. Nuclear Instruments and Methods in Physics Research B 361, 335340. https://doi.org/10.1016/j.nimb.2015.06.012.CrossRefGoogle Scholar
Catto, N., Liverman, D.G.E., Bobrowsky, P., Rutter, N., 1996. Laurentide, Cordilleran and montane glaciation in the western peace river—Grande Prairie region, Alberta and British Columbia, Canada. Quaternary International 32, 2132. https://doi.org/10.1016/1040-6182(95)00061-5.CrossRefGoogle Scholar
Clague, J.J., 1987. Quaternary stratigraphy and history, Williams Lake, British Columbia. Canadian Journal of Earth Sciences 22, 256265. https://doi.org/10.1139/e87-012.CrossRefGoogle Scholar
Clague, J.J., Armstrong, J.E., Mathews, W.H., 1980. Advance of the Late Wisconsin Cordilleran Ice Sheet in southern British Columbia since 22,000 Yr B.P. Quaternary Research 13, 322326. https://doi.org/10.1016/0033-5894(80)90060-5.CrossRefGoogle Scholar
Cuzzone, J.K., Clark, P.U., Carlson, A.E., Ullman, D.J., Rinterknecht, V.R., Milne, G.A., Lunkka, J.P., Wohlfarth, B., Marcott, S.A., Caffee, M., 2016. Final deglaciation of the Scandinavian Ice Sheet and implications for Holocene global sea-level budget. Earth and Planetary Science Letters 448, 3441. http://dx.doi.org/10.1016/j.epsl.2016.05.019.CrossRefGoogle Scholar
Dalton, A.S., Margold, M., Stokes, C.R., Tarasov, L., Dyke, A.S., Adams, R.S., Allard, S., et al. , 2020. An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex. Quaternary Science Reviews 234, 160223. https://doi.org/10.1016/j.quascirev.2020.106223.CrossRefGoogle Scholar
Darvill, C.M., Menounos, B., Goehring, B.M., Lian, O.B., Caffee, M.W., 2018. Retreat of the Western Cordilleran Ice Sheet margin during the last deglaciation. Geophysical Research Letters 45, 97109720. https://doi.org/10.1029/2018GL079419.CrossRefGoogle Scholar
Dunai, T.J., 2010. Cosmogenic Nuclides—Principles, Concepts and Applications in the Earth Surface Sciences. Cambridge University Press, New York.CrossRefGoogle Scholar
Dyke, A.S., 2004. An outline of North American deglaciation with emphasis on central and northern Canada. In: Ehlers, J., Gibbard, P.I. (Eds.), Quaternary Glaciations–Extent and Chronology, Part II. Elsevier, Amsterdam, pp. 373424. https://doi.org/10.1016/S1571-0866(04)80209-4.CrossRefGoogle Scholar
Dyke, A.S., Moore, A., Robertson, L., 2003. Deglaciation of North America: Thirty-two Digital Maps at 1:7,000,000 Scale with Accompanying Digital Chronological Database and One Poster (Two Sheets) with Full Maps Series. Geological Survey of Canada Open File 1574. https://doi.org/10.4095/214399.CrossRefGoogle Scholar
Dyke, A.S., Prest, V.K., 1987. Paleogeography of northern North America, 18 000–5 000 years ago. Map 1703A, 3 sheets. Geological Survey of Canada, Ottawa. https://doi.org/10.4095/133927.CrossRefGoogle Scholar
Edwards, T.W.D., Birks, S.J., Luckman, B.H., MacDonald, G.M., 2008. Climatic and hydrologic variability during the past millennium in the eastern Rocky Mountains and northern Great Plains of western Canada. Quaternary Research 70, 188197. https://doi.org/10.1016/j.yqres.2008.04.013.CrossRefGoogle Scholar
Fulton, R.J., 1967. Deglaciation studies in Kamloops region, an area of moderate relief, British Columbia. Geological Survey of Canada, Bulletin 165, 136. https://doi.org/10.4095/101467.Google Scholar
Fulton, R.J., 1991. A conceptual model for growth and decay of the Cordilleran Ice Sheet. Géographie physique et Quaternaire 45, 281286. https://doi.org/10.7202/032875ar.CrossRefGoogle Scholar
Gavin, D.G., Henderson, A.C.G., Westover, K.S., Fritz, S.C., Walker, I.R., Leng, M.J., Hu, F.S., 2011. Abrupt Holocene climate change and potential response to solar forcing in western Canada. Quaternary Science Reviews 30, 12431255. https://doi.org/10.1016/j.quascirev.2011.03.003.CrossRefGoogle Scholar
Gosse, J.C., Phillips, F.M., 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews 20, 14751560. https://doi.org/10.1016/S0277-3791(00)00171-2.CrossRefGoogle Scholar
Government of Canada, 2019. Snow Stations Interactive Map. Available at https://governmentofbc.maps.arcgis.com/apps/webappviewer/index.html?id=c15768bf73494f5da04b1aac6793bd2e. [accessed January 17, 2020]Google Scholar
Hartman, G.M.D., Clague, J.J., Barendregt, R.W., Reyes, A.V., 2018. Late Wisconsinan Cordilleran and Laurentide glaciation of the Peace River Valley east of the Rocky Mountains, British Columbia. Canadian Journal of Earth Sciences 55, 13241338. https://doi.org/10.1139/cjes-2018-0015.CrossRefGoogle Scholar
Heyman, J., Stroeven, A.P., Harbor, J.M., Caffee, M.W., 2011. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters 302, 7180. https://doi.org/10.1016/j.epsl.2010.11.040.CrossRefGoogle Scholar
Hickin, A.S., Lian, O.B., Levson, V.M., 2016. Coalescence of late Wisconsinan Cordilleran and Laurentide ice sheets east of the Rocky Mountain Foothills in the Dawson Creek region, northeast British Columbia, Canada. Quaternary Research 85, 409429. https://doi.org/10.1016/j.yqres.2016.02.005.CrossRefGoogle Scholar
Jackson, L.E., Phillips, F.M., Little, E.C., 1999. Cosmogenic 36Cl dating of the maximum limit of the Laurentide Ice Sheet in south-western Alberta. Canadian Journal of Earth Sciences 36, 13471356. https://doi.org/10.1139/e99-038.CrossRefGoogle Scholar
Jackson, L.E., Phillips, F.M., Shimamura, K., Little, E.C., 1997. Cosmogenic 36Cl dating of the Foothills erratics train, Alberta, Canada. Geology 25, 195198. https://doi.org/10.1130/0091-7613(1997)025<0195:CCDOTF>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Jones, R.S., Whitehorse, P.L., Bentley, M.J., Dalton, A.S., 2019. Impact of glacial isostatic adjustment on cosmogenic surface-exposure dating. Quaternary Science Reviews 212, 206-212. https://doi.org/10.1016/j.quascirev.2019.03.012.CrossRefGoogle Scholar
Kleman, J., Jansson, K., De Angelis, H., Stroeven, A.P., Hättestrand, C., Alm, G., Glasser, N., 2010. North American Ice Sheet build-up during the last glacial cycle, 115–21 kyr. Quaternary Science Reviews 29, 20362051. https://doi.org/10.1016/j.quascirev.2010.04.021.CrossRefGoogle Scholar
Lambeck, K., Purcell, A., Zhao, S., 2017. The North American Late Wisconsin ice sheet and mantle viscosity from glacial rebound analyses. Quaternary Science Reviews 158, 172210. https://doi.org/10.1016/j.quascirev.2016.11.033.CrossRefGoogle Scholar
Lesnek, A.J., Briner, J.P., Baichtal, J.F., Lyles, A.S., 2020. New constraints on the last deglaciation of the Cordilleran Ice Sheet in coastal Southeast Alaska. Quaternary Research 96, 140160. https://doi.org/10.1017/qua.2020.32.CrossRefGoogle Scholar
Lesnek, A.J., Briner, J.P., Lindqvist, C., Baichtal, J.F., Heaton, T.H., 2018. Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas. Science Advances 4, eaar5040. https://doi.org/10.1126/sciadv.aar5040.CrossRefGoogle ScholarPubMed
Lifton, N., Sato, T., Dunai, T.J., 2014. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth and Planetary Science Letters 386, 149160. https://doi.org/10.1016/j.epsl.2013.10.052.CrossRefGoogle Scholar
Lowdon, J.A., Blake, W. Jr., 1980. Geological Survey of Canada Radiocarbon Dates XX. Geological Survey of Canada Paper 80-7, 1–28. https://doi.org/10.4095/119073.CrossRefGoogle Scholar
Margold, M., Gosse, J.C., Hidy, A.J., Woywitka, R.J., Young, J.M., Froese, D., 2019. Beryllium-10 dating of the Foothills Erratics Train in Alberta, Canada, indicates detachment of the Laurentide Ice Sheet from the Rocky Mountains at 15 ka. Quaternary Research 92, 469482. https://doi.org/10.1017/qua.2019.10.CrossRefGoogle Scholar
Margold, M., Jansson, K.N., Kleman, J., Stroeven, A.P., Clague, J.J., 2013. Retreat pattern of the Cordilleran Ice Sheet in central British Columbia at the end of the last glaciation reconstructed from glacial meltwater landforms. Boreas 42, 830847. https://doi.org/10.1111/bor.12007.Google Scholar
Margold, M., Stokes, C.R., Clark, C.D., 2015b. Ice streams of the Laurentide Ice Sheet: Identification, characteristics and comparison to modern ice sheets. Earth-Science Reviews 143, 117146. https://doi.org/10.1016/j.earscirev.2015.01.011.CrossRefGoogle Scholar
Margold, M., Stokes, C.R., Clark, C.D., 2018. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction the deglaciation of the Laurentide Ice Sheet. Quaternary Science Reviews 189, 130. https://doi.org/10.1016/j.quascirev.2018.03.013.CrossRefGoogle Scholar
Margold, M., Stokes, C.R., Clark, C.D., Kleman, J., 2015a. Ice streams in the Laurentide Ice Sheet: a new mapping inventory. Journal of Maps 11, 380395. https://doi.org/10.1080/17445647.2014.912036.CrossRefGoogle Scholar
Margold, M., Stroeven, A.P., Clague, J.J., Heyman, J., 2014. Timing of terminal Pleistocene deglaciation at high elevations in southern central British Columbia constrained by 10Be exposure dating. Quaternary Science Reviews 99, 193202. https://doi.org/10.1016/j.quascirev.2014.06.027.CrossRefGoogle Scholar
Mathews, W.H., 1978. Quaternary Stratigraphy and Feomorphology of Charlies Lake (94A) Map Area, British Columbia. Paper 76-20. Geological Survey of Canada, Ottawa, 25 pp. https://doi.org/10.4095/104544.CrossRefGoogle Scholar
Menounos, B., Goehring, B.M., Osborn, G., Margold, M., Ward, B., Bond, J., Clarke, G.K.C., et al. , 2017. Cordilleran Ice Sheet mass loss preceded climate reversals near the Pleistocene Termination. Science 358, 781784. https://doi.org/10.1126/science.aan3001.CrossRefGoogle ScholarPubMed
Menounos, B., Osborn, G., Clague, J.J., Luckman, B.H., 2009. Latest Pleistocene and Holocene glacier fluctuations in western Canada. Quaternary Science Reviews 28, 20492074. https://doi.org/10.1016/j.quascirev.2008.10.018.CrossRefGoogle Scholar
Ng, F.S.L., Barr, L.D., Clark, C.D., 2010. Using the surface profiles of modern ice masses to inform palaeo-glacier reconstructions. Quaternary Science Reviews 29, 32403255. https://doi.org/10.1016/j.quascirev.2010.06.045.CrossRefGoogle Scholar
Pellatt, M.G., Mathewes, R.W., 1997. Holocene tree line and climate change on the Queen Charlotte Islands, Canada. Quaternary Research 48, 8899. https://doi.org/10.1006/qres.1997.1903.CrossRefGoogle Scholar
Peltier, W.R., 2004. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5 G (VM2) model and GRACE. Annual Reviews of Earth and Planetary Sciences 32, 111149. https://doi.org/10.1146/annurev.earth.32.082503.144359.CrossRefGoogle Scholar
Peltier, W.R. Argus, D.F., Drummond, R., 2015. Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research: Solid Earth 120, 450487. https://doi.org/10.1002/2014JB011176.Google Scholar
Pico, T., Mitrovica, J.X., Mix, A.C., 2020. Sea level fingerprinting of the Bering Strait flooding history detects the source of the Younger Dryas climate event. Science Advances 6, eaay2935. https://doi.org/10.1126/sciadv.aay2935.CrossRefGoogle ScholarPubMed
Prest, V.K., Grant, D., Rampton, V., 1968. Glacial Map of Canada. Map 1253A. Geological Survey of Canada, Department of Energy, Mines and Resources, Ottawa. https://doi.org/10.4095/108979.CrossRefGoogle Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., et al. ., 2014. A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428. https://doi.org/10.1016/j.quascirev.2014.09.007.CrossRefGoogle Scholar
Reasoner, M.A., Osborn, G., Rutter, N.W., 1994. Age of the Crowfoot advance in the Canadian Rocky Mountains: a glacial event coeval with the Younger Dryas oscillation. Geology 22, 439442. https://doi.org/10.1130/0091-7613(1994)022<0439:AOTCAI>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Sacco, D.A., Ward, B.C., Lian, O.B., Maynard, D.E., Geertsema, M., 2017. Quaternary geology of part of the McLeod Lake map area (NTS 093J), central British Columbia: lithostratigraphy, glacial history and chronology. Canadian Journal of Earth Sciences 54, 10631084. https://doi.org/10.1139/cjes-2016-0198.CrossRefGoogle Scholar
Schwörer, C., Gavin, D.G., Walker, I.R., Hu, F.S., 2017. Holocene tree line changes in the Canadian Cordillera are controlled by climate and topography. Journal of Biogeography 44, 11481159. https://doi.org/10.1111/jbi.12904.CrossRefGoogle Scholar
Seguinot, J., 2020. Cordilleran Ice Sheet Glacial Cycle Simulations Continuous Variables [Dataset]. Zenodo. http://doi.org/10.5281/zenodo.3606536. [accessed October 06, 2020]CrossRefGoogle Scholar
Seguinot, J., Rogozhina, I., Stroeven, A.P., Margold, M., Kleman, J., 2016. Numerical simulations of the Cordilleran ice sheet through the last glacial cycle. The Cryosphere 10, 639664. https://doi.org/10.5194/tc-10-639-2016.CrossRefGoogle Scholar
Shaw, J., Sharpe, D., Harris, J., 2010. A flowline map of glaciated Canada based on remote sensing data. Canadian Journal of Earth Sciences 47, 89101. https://doi.org/10.1139/E09-068.CrossRefGoogle Scholar
Staiger, J., Gosse, J., Toracinta, R., Oglesby, B., Fastook, J., Johnson, J.V., 2007. Atmospheric scaling of cosmogenic nuclide production: Climate effect. Journal of Geophysical Research 112, B02205. https://doi.org/10.1029/2005JB003811.CrossRefGoogle Scholar
Stroeven, A.P., Fabel, D., Codilean, A.T., Kleman, J., Clague, J.J., Miguens-Rodriguez, M., Xu, S., 2010. Investigating the glacial history of the northern sector of the Cordilleran Ice Sheet with cosmogenic 10Be concentrations in quartz. Quaternary Science Reviews 29, 36303643. https://doi.org/10.1016/j.quascirev.2010.07.010.CrossRefGoogle Scholar
Stroeven, A.P., Fabel, D., Margold, M., Clague, J.J., Xu, S., 2014. Investigating absolute chronologies of glacial advances in the NW sector of the Cordilleran Ice Sheet with terrestrial in situ cosmogenic nuclides. Quaternary Science Reviews 92, 429443. https://doi.org/10.1016/j.quascirev.2013.09.026.CrossRefGoogle Scholar
Stumpf, A.J., Broster, B.E., Levson, V.M., 2000. Multiphase flow of the late Wisconsian Cordilleran ice sheet in western Canada. GSA Bulletin 112, 18501863. https://doi.org/10.1130/0016-7606(2000)112<1850:MFOTLW>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Tarasov, L., Dyke, A.S., Neal, R.M., Peltier, W.R., 2012. A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth and Planetary Science Letters 315–316, 3040. https://doi.org/10.1016/j.epsl.2011.09.010.CrossRefGoogle Scholar
Tarasov, L., Peltier, W.R., 2004. A geophysically constrained large ensemble analysis of the deglacial history of the North American ice-sheet complex. Quaternary Science Reviews 23, 359388. https://doi.org/10.1016/j.quascirev.2003.08.004.CrossRefGoogle Scholar
Ullman, D.J., Carlson, A.E., Hostetler, S.W., Clark, P.U., Cuzzone, J., Milne, G.A., Winsor, K., Caffee, M., 2016. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change. Quaternary Science Reviews 152, 4959. https://doi.org/10.1016/j.quascirev.2016.09.014.CrossRefGoogle Scholar
Ward, B.C., Wilson, M.C., Nagorsen, D.W., Nelson, D.E., Driver, J.C., Wigen, R.J., 2003. Port Eliza cave: North American West Coast interstadial environment and implications for human migrations. Quaternary Science Reviews 22, 13831388. https://doi.org/10.1016/S0277-3791(03)00092-1.CrossRefGoogle Scholar
Ward, G.K., Wilson, S.R., 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20, 1931. https://doi.org/10.1111/j.1475-4754.1978.tb00208.x.CrossRefGoogle Scholar
Young, N.E., Schaefer, J.M., Briner, J.P., Goehring, B.M., 2013. A 10Be production-rate calibration for the Arctic. Journal of Quaternary Science 28, 515526. https://doi.org/10.1002/jqs.2642.CrossRefGoogle Scholar
Supplementary material: File

Dulfer et al. supplementary material

Dulfer et al. supplementary material 1

Download Dulfer et al. supplementary material(File)
File 59.9 KB
Supplementary material: File

Dulfer et al. supplementary material

Dulfer et al. supplementary material 2

Download Dulfer et al. supplementary material(File)
File 20.6 KB
Supplementary material: File

Dulfer et al. supplementary material

Dulfer et al. supplementary material 3

Download Dulfer et al. supplementary material(File)
File 16.6 KB
Supplementary material: File

Dulfer et al. supplementary material

Dulfer et al. supplementary material 4

Download Dulfer et al. supplementary material(File)
File 19.4 KB
Supplementary material: File

Dulfer et al. supplementary material

Dulfer et al. supplementary material 5

Download Dulfer et al. supplementary material(File)
File 16.2 KB