Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T01:44:57.998Z Has data issue: false hasContentIssue false

Uranium-Series Ages of Marine Terrace Corals from the Pacific Coast of North America and Implications for Last-Interglacial Sea Level History

Published online by Cambridge University Press:  20 January 2017

Daniel R. Muhs
Affiliation:
U.S. Geological Survey, MS 974, Box 25046, Federal Center, Denver, Colorado 80225
George L. Kennedy
Affiliation:
U.S. Geological Survey, MS 974, Box 25046, Federal Center, Denver, Colorado 80225 Department of Geological Sciences, San Diego State University, San Diego, California 92182-0337
Thomas K. Rockwell
Affiliation:
Department of Geological Sciences, San Diego State University, San Diego, California 92182-0337

Abstract

Few of the marine terraces along the Pacific coast of North America have been dated using uranium-series techniques. Ten terrace sequences from southern Oregon to southern Baja California Sur have yielded fossil corals in quantities suitable for U-series dating by alpha spectrometry. U-series-dated terraces representing the ∼80,000 yr sea-level high stand are identified in five areas (Bandon, Oregon; Point Arena, San Nicolas Island, and Point Loma, California; and Punta Banda, Baja California); terraces representing the ∼125,000 yr sea-level high stand are identified in eight areas (Cayucos, San Luis Obispo Bay, San Nicolas Island, San Clemente Island, and Point Loma, California; Punta Bands and Isla Guadalupe, Baja California; and Cabo Pulmo, Baja California Sur). On San Nicolas Island, Point Loma, and Punta Bands, both the ∼80,000 and the ∼125,000 yr terraces are dated. Terraces that may represent the ∼105,000 sea-level high stand are rarely preserved and none has yielded corals for U-series dating. Similarity of coral ages from midlatitude, erosional marine terraces with coral ages from emergent, constructional reefs on tropical coastlines suggests a common forcing mechanism, namely glacioeustatically controlled fluctuations in sea level superimposed on steady tectonic uplift. The low marine terrace dated at ∼125,000 yr on Isla Guadalupe, Baja California, presumed to be tectonically stable, supports evidence from other localities for a +6-m sea level at that time. Data from the Pacific Coast and a compilation of data from other coasts indicate that sea levels at ∼80,000 and ∼105,000 yr may have been closer to present sea level (within a few meters) than previous studies have suggested.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C. S. (1953). The marine and stream terraces of the Capitola-Watsonville area. University of California Publications in Geography 10, 144.Google Scholar
Bard, E. Hamelin, B., and Fairbanks, R. G. (1990). U-Th ages obtained by mass spectrometry in corals from Barbados: Sea level during the past 130,000 years. Nature 346, 456458.Google Scholar
Bard, E. Fairbanks, R. G. Hamelin, B. Zindler, A., and Hoang, C. T. (1991). Uranium-234 anomalies in corals older than 150,000 years. Geochimica et Cosmochimica Acta 55, 23852390.CrossRefGoogle Scholar
Bamola, J. M. Pimienta, P. Raynaud, D., and Korotkevich, Y. S. (1991). C02-climate relationship as deduced from the Vostok ice core: A re-examination based on new measurements and on a re-evaluation of the air dating. Tellus 43B, 8390.Google Scholar
Berger, A., and Loutre, M. F. (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.Google Scholar
Bloom, A. L. Broecker, W. S. Chappell, J. M. A. Matthews, R. K., and Mesolella, K. J. (1974). Quaternary sea level fluctuations on a tectonic coast: New 230Th/234U dates from the Huon Peninsula, New Guinea. Quaternary Research 4, 185205.Google Scholar
Broecker, W. S. Thurber, D. L. Goddard, J. Ku, T.-L. Matthews, R. K., and Mesolella, K. J. (1968). Milankovitch hypothesis supported by precise dating of coral reefs and deep-sea sediments. Science 159, 297300.Google Scholar
Chappell, J., and Veeh, H. H. (1978). Late Quaternary tectonic movements and sea-level changes at Timor and Atauro Island. Geological Society of America Bulletin 89, 356367.Google Scholar
Chappell, J., and Shackleton, N. J. (1986). Oxygen isotopes and sea level. Nature 324, 137140.Google Scholar
Chen, J. H„ Edwards, R. L„ and Wasserburg, G. J. (1986). 238U, 234U and 232Th in seawater. Earth and Planetary Science Letters 80, 241251.Google Scholar
Chen, J. H. Curran, H. A. White, B., and Wasserburg, G. J. (1991). Precise chronology of the last interglacial period: 234U-230Th data from fossil coral reefs in the Bahamas. Geological Society of America Bulletin 103, 8297.2.3.CO;2>CrossRefGoogle Scholar
Collins, L. B„ Zhu, Z. R„ Wyrwoll, K.-H. Hatcher, B. G„ Playford, P. E. Chen, J. H. Eisenhauer, A., and Wasserburg, G. J. (1993). Late Quaternary evolution of coral reefs on a cool-water carbonate margin: The Abrolhos carbonate platforms, southwest Australia. Marine Geology 110, 203212.CrossRefGoogle Scholar
Davis, W. M. (1933). Glacial epochs of the Santa Monica Mountains, California. Geological Society of America Bulletin 44, 10411133.Google Scholar
Dodge, R. E. Fairbanks, R. G. Benninger, L. K., and Maurrasse, F. (1983). Pleistocene sea levels from raised coral reefs of Haiti. Science 219, 14231425.Google Scholar
Edwards, R. L. Chen, J. H. Ku, T.-L., and Wasserburg, G. J. (1987). Precise timing of the last interglacial period from mass spectrometric determination of thorium-230 in corals. Science 236, 15471553.CrossRefGoogle ScholarPubMed
Fairbanks, R. G. (1989), A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637642.Google Scholar
Gallup, C. D. Edwards, R. L., and Johnson, R. G. (1994). The timing of high sea levels over the past 200,000 years. Science 263, 796800.Google Scholar
Goldberg, E. D. (1965). An observation on marine sedimentation rates during the Pleistocene. Limnology and Oceanography, Suppl. 10, R125R128.Google Scholar
Hamelin, B. Bard, E. Zindler, A., and Fairbanks, R. G. (1991). 234U/238U mass spectrometry of corals: How accurate is the U-Th age of the last interglacial period? Earth and Planetary Science Letters 106, 169180.Google Scholar
Hanson, K. L. Lettis, W. R. Wesling, J. R. Kelson, K. I., and Mezger, L. (1992). Quaternary marine terraces, south-central coastal California: Implications for crustal deformation and coastal evolution. In “Quaternary Coasts of the United States: Marine and Lacustrine Systems” (Fletcher, C. H. III, and Wehmiller, J. F., Eds.). SEPM (Society for Sedimentary Geology) Special Publication 48, 323332.Google Scholar
Harmon, R. S. Mitterer, R. M. Kriausakul, N. Land, L. S. Schwarcz, H. P., Garrett, R, Larson, G. J. Vacher, H. L., and Rowe, M. (1983). U-series and amino-acid racemization geochronology of Bermuda: Implications for eustatic sea-level fluctuation over the past 250,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 44, 4170.Google Scholar
Jennings, C. W., and Strand, R. G. (1960). “Geologic Map of California, Ukiah Sheet.” California Department of Natural Resources, Division of Mines and Geology, Sacramento, scale 1:250,000.Google Scholar
Kennedy, G. L. Lajoie, K. R., and Wehmiller, J. F. (1982). Aminostratigraphy and faunal correlations of late Quaternary marine terraces, Pacific Coast, USA. Nature 299, 545547.CrossRefGoogle Scholar
Kennedy, G. L. Wehmiller, J. F., and Muhs, D. R. (1988). Late Pleistocene climatic change: Evidence from coastal San Luis Obispo County, central California. American Quaternary Association Program and Abstracts of the Tenth Biennia! Meeting, p. 126.Google Scholar
Kern, J. P. (1977). Origin and history of upper Pleistocene marine terraces, San Diego, California. Geological Society of America Bulletin 88, 15531566.Google Scholar
Kern, J. P., and Rockwell, T. K. (1992). Chronology and deformation of marine shorelines, San Diego County, California. In “Quaternary Coasts of the United States: Marine and Lacustrine Systems” (Fletcher, C. H. III, and Wehmiller, J. F., Eds.). SEPM (Society for Sedimentary Geology) Special Publication 48, 377382.Google Scholar
Ku, T.-L., and Kem, J. P. (1974). Uranium-series age of the upper Pleistocene Nestor terrace, San Diego, California. Geological Society of America Bulletin 85, 17131716.2.0.CO;2>CrossRefGoogle Scholar
Ku, T.-L. Ivanovich, M., and Luo, S. (1990). U-series dating of last interglacial high sea stands: Barbados revisited. Quaternary Research 33, 129147.Google Scholar
Lajoie, K. R. Ponti, D. J. T Powell, C. L. II Mathieson, S. A., and Sama-Wojcicki, A. M. (1991). Emergent marine strandlines and associated sediments, coastal California: A record of Quaternary sea-level fluctuations, vertical tectonic movements, climatic changes, and coastal processes. In “Quaternary Nonglacial Geology; Conterminous U.S.” (Morrison, R. B., Ed.). Geological Society of America, Boulder, Colorado, The Geology of North America, v. K-2, 190203.Google Scholar
Lettis, W. R., and Hanson, K. L. (1992). Quaternary influences on coastal morphology, south-central California. Quaternary International 15/16, 135148.Google Scholar
Lindberg, D. R. Roth, B. Kellogg, M. G., and Hubbs, C. L. (1980). Invertebrate megafossils of Pleistocene (Sangamon interglacial) age from Isla de Guadalupe, Baja California, Mexico. In “The California Islands: Proceedings of a Multidisciplinary Symposium” (Power, D. M., Ed.). Santa Barbara Museum of Natural History, Santa Barbara, 4162.Google Scholar
Matthews, R. K. (1973). Relative elevation of late Pleistocene high sea level stands: Barbados uplift rates and their implications. Quaternary Research 3, 147153.Google Scholar
Mclnelly, G. W., and Kelsey, H. M. (1990). Late Quaternary tectonic deformation in the Cape Arago-Bandon region of coastal Oregon as deduced from wave-cut platforms. Journal of Geophysical Research 95, 66996713.Google Scholar
Mesolella, K. J. Matthews, R. K. Broecker, W. S., and Thurber, D. L. (1969). The astronomical theory of climatic change: Barbados data. Journal of Geology 77, 250274.Google Scholar
Milankovitch, M. M. (1941). “Canon of Insolation and the Ice Age Problem.” Koniglich Serbische Akademie, Beograd (English translation by the Israel Program for Scientific Translations, Jerusalem, Israel, 1969).Google Scholar
Mix, A. C. (1992). The marine oxygen isotope record: Constraints on timing and extent of ice-growth events (120-65 ka). In “The Last Interglacial-Glacial Transition in North America” (Clark, P. and Lea, P., Eds.). Geological Society of America Special Paper 270, 1930.Google Scholar
Miyoshi, M. (1983). Estimated ages of late Pleistocene marine terraces in Japan, dcduced from uplift rate. Geographical Review of Japan 56, 819834.Google Scholar
Moore, W. S. (1982). Late Pleistocene sea-level history. In “Uranium-Series Disequilibrium: Applications to Environmental Problems” (Ivanovitch, M. and Harmon, R. S., Eds.). Clarendon Press, Oxford, 481496.Google Scholar
Muhs, D. R. (1983). Quaternary sea-level events on northern San Clemente Island, California. Quaternary Research 20, 322341.CrossRefGoogle Scholar
Muhs, D. R. (1985). Amino acid age estimates of marine terraces and sea levels on San Nicolas Island, California. Geology 13, 5861.Google Scholar
Muhs, D. R. (1992). The last interglacial-glacial transition in North America: Evidence from uranium-series dating of coastal deposits. In“The Last Interglacial-Glacial Transition in North America” (Clark, P. and Lea, P., Eds.). Geological Society of America Special Paper 270, 3151.Google Scholar
Muhs, D. R., and Kyser, T. K. (1987). Stable isotope compositions of fossil mollusks from southern California: Evidence for a cool last interglacial ocean. Geology 15, 119122.Google Scholar
Muhs, D. R., and Szabo, B. J. (1982). Uranium-series age of the Eel Point terrace, San Clemente Island, California. Geology 10, 2326.Google Scholar
Muhs, D. R., and Szabo, B. J. (1994). New uranium-series ages of the Waimanalo Limestone, Oahu, Hawaii: Implications for sea level during the last interglacial period. Marine Geology 118, in press.Google Scholar
Muhs, D. R. Rosholt, J. N., and Bush, C. A. (1989). The uraniumtrend dating method: Principles and application for southern California marine terrace deposits. Quaternary International 1, 1934.Google Scholar
Muhs, D. R. Kelsey, H. M. Miller, G. H. Kennedy, G. L. Whelan, J. F., and Mclnelly, G. W. (1990). Age estimates and uplift rates for late Pleistocene marine terraces: Southern Oregon portion of the Cascadia forearc. Journal of Geophysical Research 95, 66856698.Google Scholar
Muhs, D. R. Rockwell, T. K., and Kennedy, G. L. (1992). Late Quaternary uplift rates of marine terraces on the Pacific coast of North America, southern Oregon to Baja California Sur. Quaternary International 15/16, 121133.Google Scholar
Neef, G., and Hendy, C. (1988). Late Pleistocene-Holocene acceleration of uplift rate in southwest Erromango Island, southern Vanuatu, South Pacific: Relation to the growth of the Vanuatuan mid sedimentary basin. Journal of Geology 1, 481494.Google Scholar
Ortlieb, L. (1987). “Neotectonique et Variations du Niveau Marin au Quatemaire dans la Rdgion du Golfe de Califomie, Mexique.” Institut Frangais de Recherche Scientifique pour le D6veloppement en Cooperation, Collection fitudes et Theses, Paris.Google Scholar
Ota, Y. (1986). Marine terraces as reference surfaces in late Quaternary tectonics studies: Examples from the Pacific rim. Royal Society of New Zealand Bulletin 24, 357375.Google Scholar
Ota, Y., and Omura, O. (1992). Contrasting styles and rates of tectonic uplift of coral reef terraces in the Ryukyu and Daito Islands, southwestern Japan. Quaternary International 15/16, 1729.Google Scholar
Peteet, D. Rind, D., and Kukla, G. (1992). Wisconsinian ice-sheet initiation: Milankovitch forcing, paleoclimatic data, and global climate modeling. In “The Last Interglacial-Glacial Transition in North America” (Clark, P. U. and Lea, P. D., Eds.). Geological Society of America Special Paper 270, 5369.Google Scholar
Pillans, B. (1983). Upper Quaternary marine terrace chronology and deformation, South Taranaki, New Zealand. Geology 11, 292297.Google Scholar
Richards, D. A. Smart, P. L., and Edwards, R. L. (1994). Maximum sea levels for the last glacial period from U-series ages of submerged speleothems. Nature 367, 357360.Google Scholar
Rind, D. Peteet, D., and Kukla, G. (1989). Can Milankovitch orbital variations initiate the growth of ice sheets in a general circulation model? Journal of Geophysical Research 94, 1285112871.Google Scholar
Rockwell, T. K. Muhs, D. R. Kennedy, G. L. Hatch, M. E. Wilson, S. H., and Klinger, R. E. (1989). Uranium-series ages, faunal correlations and tectonic deformation of marine terraces within the Agua Blanca fault zone at Punta Banda, northern Baja California, Mexico. In “Geologic Studies in Baja California” (Abbott, P. L., Ed.). Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles, Book 63, pp. 116.Google Scholar
Squires, D. F. (1959). Results of the Puritan-American Museum of Natural History expedition to western Mexico. Bulletin of the American Museum of Natural History 118, 367432.Google Scholar
Stearns, C. E. (1976). Estimates of the position of sea level between 140,000 and 75,000 years ago. Quaternary Research 6, 445449.Google Scholar
Stein, M. Wasserburg, G. J. Lajoie, K. R., and Chen, J. H. (1991). U-series ages of solitary corals from the California coast by mass spectrometry. Geochimica et Cosmochimica Acta 55, 37093722.CrossRefGoogle Scholar
Stein, M. Wasserburg, G. J. Aharon, P. Chen, J. H. Zhu, Z. R. Bloom, A., and Chappell, J. (1993). TIMS U-series dating and stable isotopes of the last interglacial event in Papua New Guinea. Geochimica et Cosmochimica Acta 57, 25412554.Google Scholar
Taylor, F. W., and Mann, P. (1991). Late Quaternary folding of coral reef terraces, Barbados. Geology 19, 103106.Google Scholar
Taylor, F. W. Jouannic, C., and Bloom, A. L. (1985). Quaternary uplift of the Torres Islands, northern New Hebrides frontal arc: Comparison with Santo and Malekula Islands, central New Hebrides frontal arc. Journal of Geology 93, 419438.Google Scholar
Valentine, J. W., and Veeh, H. H. (1969), Radiometric ages of Pleistocene terraces from San Nicolas Island, California. Geological Society of America Bulletin 80, 14151418.Google Scholar
Vedder, J. G., and Norris, R. M. (1963). “Geology of San Nicolas Island California.” U.S. Geological Survey Professional Paper 369. Google Scholar
Veeh, H. H., and Valentine, J. W. (1967). Radiometric ages of Pleistocene fossils from Cayucos, California. Geological Society of America Bulletin 78, 547550.Google Scholar
Wagner, D. L., and Bortugno, E. J. (1982). “Geologic Map of the Santa Rosa quadrangle.” Regional Geologic Map Series, map 2A, 5 sheets. California Division of Mines and Geology, Sacramento, scale 1: 250,000.Google Scholar
Weber, G.E. (1983). “Geologic Investigation of the Marine Terraces of the San Simeon Region and Pleistocene Activity on the San Simeon Fault Zone, San Luis Obispo County, California.” U.S. Geological Survey Final Technical Report, Contract 14-08-0001-18230.Google Scholar
Winograd, I. J. Coplen, T. B. Landwehr, J. M. Riggs, A. C. Ludwig, K. R. Szabo, B. J. Kolesar, P. T., and Revesz, K. M. (1992). Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Science 258, 255260.Google Scholar
Woodroffe, C. D. Short, S. A. Stoddart, D. R. Spencer, T., and Harmon, R. S. (1991). Stratigraphy and chronology of late Pleistocene reefs in the southern Cook Islands, south Pacific. Quaternary Research 35, 246263.Google Scholar