Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T01:34:11.489Z Has data issue: false hasContentIssue false

Unstable Climate Oscillations during the Late Holocene in the Eastern Bransfield Basin, Antarctic Peninsula

Published online by Cambridge University Press:  20 January 2017

Boo-Keun Khim*
Affiliation:
Department of Marine Science, Pusan National University, Pusan, 609-735, Korea
Ho Il Yoon
Affiliation:
Polar Sciences Laboratory, Korea Ocean Research and Development Institute, P.O. Box 29, Ansan, 425-600, Korea
Cheon Yun Kang
Affiliation:
Polar Sciences Laboratory, Korea Ocean Research and Development Institute, P.O. Box 29, Ansan, 425-600, Korea
Jang Jun Bahk
Affiliation:
Marine Environmental & Climate Change Laboratory, Korea Ocean Research and Development Institute, P.O. Box 29, Ansan, 425-600, Korea
*
1To whom correspondence should be addressed. Fax: 82-51-581-2963. E-mail: [email protected].

Abstract

Core A9-EB2 from the eastern Bransfield Basin, Antarctic Peninsula, consists of pelagic (diatom ooze-clay couplets and bioturbated diatom ooze) and hemipelagic (bioturbated mud) sediments interbedded with turbidites (homogeneous mud and silt–clay couplets). The cyclic and laminated nature of these pelagic sediments represents alternation between the deposition of diatom-rich biogenic sediments and of terrigenous sediments. Sediment properties and geochemical data explain the contrasting lamination, with light layers being finer-grained and relatively rich in total organic carbon and biogenic silica content. Also, the high-resolution magnetic susceptibility (MS) variations highlight distinct features: high MS values coincide with clastic-rich sections and low MS values correspond to biogenic sections. The chronology developed for core A9-EB2 accounts for anomalous ages associated with turbidites and shows a linear sedimentation rate of approximately 87 cm/103 yr, which is supported by an accumulation rate of 80 cm/103 yr calculated from 210Pb activity. The late Holocene records clearly identify Neoglacial events of the Little Ice Age (LIA) and Medieval Warm Period (MWP). Other unexplained climatic events comparable in duration and amplitude to the LIA and MWP events also appear in the MS record, suggesting intrinsically unstable climatic conditions during the late Holocene in the Bransfield Basin of Antarctic Peninsula.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelmann, A., and Gersonde, R. Biosiliceous particle flux in the Southern ocean. Marine Chemistry 35, (1991). 503 536.CrossRefGoogle Scholar
Anderson, R.Y. Possible connection between surface winds, solar activity and the Earth's magnetic field. Nature 358, (1992). 51 53.CrossRefGoogle Scholar
Andrews, J.T., Domack, E.W., Cunningham, W.L., Leventer, A., Licht, K.J., Jull, A.J.T., DeMaster, D.J., and Jenning, A. Problems and possible solutions concerning radiocarbon dating of surface marine sediments, Ross Sea, Antarctic. Quaternary Research 52, (1999). 206 216.CrossRefGoogle Scholar
Bárcena, M.A., Gersonde, R., Ledesma, S., Fabrés, J., Calafat, A.M., Canals, M., Sierro, F.J., and Flores, J.A. Record of Holocene glacial oscillations in Bransfield Basin as revealed by siliceous microfossil assemblages. Antarctic Science 10, (1998). 269 285.CrossRefGoogle Scholar
Behl, R.J., and Kennett, J.P. Brief interstadial events in the Santa Barbara basin, NE Pacific, during the past 60 kyr. Nature 379, (1996). 243 246.CrossRefGoogle Scholar
Berkman, P.A., and Forman, S.L. Pre-bomb radiocarbon and the reservoir correction for calcareous marine species in the Southern ocean. Geophysical Research Letters 23, (1996). 363 366.CrossRefGoogle Scholar
Björck, S., Hjort, C., Ingólfsson, O., and Skog, G. Radiocarbon dates from the Antarctic Peninsula—Problems and potential. Lowe, J.J. Radiocarbon Dating: Recent Applications and Future Potential. (1991). Cambridge Univ. Press, Cambridge. 55 65.Google Scholar
Björck, S., Olsson, S., Ellis-Evans, C., Hakansson, H., Humlum, O., and De Lirio, J.M. Late Holocene palaeoclimate records from lake sediments on James Ross Island, Antarctica. Palaeogeography, Palaoeclimatology, Palaeoecology 121, (1996). 195 220.CrossRefGoogle Scholar
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., and Bonani, G. Correlations between climate records from North Atlantic sediments and Greenland ice:. Nature 365, (1993). 143 147.CrossRefGoogle Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, (1997). 1257 1266.CrossRefGoogle Scholar
Cias, P., Petit, J.R., Lorius, C., Barkov, N.I., Lipenkov, V., and Nicolaiev, V. Evidence for an early Holocene climatic optimum in the Antarctic deep ice-core record. Climatic Dynamics 6, (1992). 169 177.CrossRefGoogle Scholar
Clark, P.U., Alley, R.B., and Pollard, D. Northern Hemisphere ice-sheet influences on global climate change. Science 286, (1999). 1104 1111.CrossRefGoogle Scholar
DeMaster, D.J., Nelson, T.M., Nittrouer, C.A., and Harden, S.L. Biogenic silica and organic carbon accumulation in modern Bransfield Strait sediments. Antarctic Journal of the United States 22, (1987). 108 110.Google Scholar
Diekmann, B., Kuhn, G., Rachold, V., Abelmann, A., Brathauer, U., Futterer, D.K., Gersonde, R., and Grobe, H. Terrigenous sediment supply in the Scotia Sea (Southern Ocean): Response to late Quaternary ice dynamics in Patagonia and on the Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology 162, (2000). 357 387.CrossRefGoogle Scholar
Domack, E.W., and Ishman, S. Magnetic susceptibility of antarctic glacial marine sediments. Antarctic Journal of United States 27, (1993). 64 65.Google Scholar
Domack, E.W., and Mayewski, P.A. Bi-polar ocean linkages: Evidence from late Holocene Antarctic marine and Greenland ice core records. The Holocene 9, (1999). 247 251.CrossRefGoogle Scholar
Domack, E.W., and McClennen, C.E. Accumulation of glacial marine sediments in fjords of the Antarctic Peninsula and their use as late Holocene paleoenvironmental indicators. Ross, R., Hoffman, E., and Quetin, L. Foundations for Ecological Research West of the Antarctic Peninsula. Antarctic Research Series 70 (1996). American Geophysical Union, Washington. 135 154.CrossRefGoogle Scholar
Domack, E.W., Ishman, S.E., Stein, A.B., McClenen, C.E., and Jull, A.S.T. Late Holocene advance of the Muller Ice shelf, Antarctic Peninsula: Sedimentologic, geochemical, and paleontological evidence. Antarctic Science 7, (1995). 159 170.CrossRefGoogle Scholar
Domack, E.W., Leventer, A., Dunbar, R., Taylor, F., Brachfeld, S., and Sjunneskog, C. Chronology of the Palmer Deep site, Antarctic Peninsula: A Holocene palaeoenvironmental reference for the circum-Antarctic. The Holocene 11, (2000). 1 9.CrossRefGoogle Scholar
Domack, E.W., Mashiotta, T.A., Burkley, L.W., and Ishman, S.E. 300-year cyclicity in organic matter preservation in Antarctic fjord sediments. Kennett, J.P., and Warnke, D.A. The Antarctic Paleoenvironment: A Perspective on Global Change. Antarctic Research Series 60 (1993). American Geophysical Union, Washington. 265 272.CrossRefGoogle Scholar
Dwyer, T.R., Mullins, H.T., and Good, S.C. Paleoclimatic implications of Holocene lake-level fluctuations, Owasco Lake, New York. Geology 24, (1996). 519 523.2.3.CO;2>CrossRefGoogle Scholar
Fabrés, J., Calafat, A., Canals, M., Bárcena, M.A., and Flores, J.A. Bransfield Basin fine-grained sediments: late-Holocene sedimentary processes and Antarctic oceanographic conditions. The Holocene 10, (2000). 703 718.CrossRefGoogle Scholar
Gibson, J.A.E., Trull, T., Nichols, P.D., Summons, R.W., and McMinn, A. Sedimentation of 13C-rich organic matter from Antarctic sea-ice algae: A potential indicator of past sea ice extent. Geology 27, (1999). 331 334.2.3.CO;2>CrossRefGoogle Scholar
Gordon, J.E., and Harkness, D.D. Magnitude and geographic variation of the radiocarbon content in Antarctic marine life: Implications for reservoir correction in radiocarbon dating. Quaternary Science Reviews 11, (1992). 697 708.CrossRefGoogle Scholar
Gordon, A.L., and Nowlin, W.D. The basin waters of the Bransfield Strait. Journal of Physical Oceanography 8, (1978). 258 264.2.0.CO;2>CrossRefGoogle Scholar
Gracia, E., Canals, M., Farran, M., Prieto, M.J., and Sorribas, J. Morphostructure and evolution of the Central and Eastern Bransfield basins (NW Antarctic Peninsula). Marine Geophysical Researches 18, (1996). 429 448.CrossRefGoogle Scholar
Gracia, E., Canals, M., Farran, M., Sorribas, J., and Prieto, M.J. Central and Eastern Bransfield basins (Antarctica) from high-resolution swath-bathymetry data. Antarctic Science 9, (1997). 168 180.CrossRefGoogle Scholar
Grove, J.M. The Little Ice Age. (1988). Cambridge Univ. Press, Cambridge.Google Scholar
Harden, S.L., DeMaster, D.J., and Nittrouer, C.A. Developing sediment geochronologies for high-latitude continental shelf deposits: A radiochemical approach. Marine Geology 103, (1992). 69 97.CrossRefGoogle Scholar
Harworth, C.A. Holocene glacial chronologies of the Brooks Range, Alaska and their relationship to climatic change. (1988). State University of New York, Buffalo.Google Scholar
Hofmann, E.E., Klinck, J.M., Lascara, C.M., and Smith, D.A. Water mass distribution and circulation west of the Antarctic Peninsula including Bransfield Strait. Ross, R.M., Hofmann, E.E., and Quetin, L.B. Foundations for Ecological Research West of the Antarctic Peninsula. Antarctic Research Series 70 (1996). American Geophysical Union, Washington. 61 80.CrossRefGoogle Scholar
Imbrie, J., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G., Kutzbach, J., Martinson, D.G., and McIntyre, A. On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovitch forcing. Paleoceanography 7, (1992). 701 738.CrossRefGoogle Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Gundestrup, N.S., Hammer, C.U., Andersen, U., Andersen, K.K., Hvidberg, C.S., Dahl-Jensen, D., Steffensen, J.P., Shoji, H., Sveinbjoernsdottir, A.E., White, J., Jouzel, J., and Fisher, D. The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. Journal of Geophysical Research 102, (1997). 26,397 26,410.CrossRefGoogle Scholar
Jones, P.D., Marsh, R., Wigley, T.M.L., and Peel, D.A. Decadal timescale links between Antarctic Peninsula ice-core oxygen-18, deuterium and temperature. The Holocene 3, (1993). 14 26.CrossRefGoogle Scholar
Karlen, W. Holocene glacier fluctuations in Scandinavia. Striae 18, (1982). 26 34.Google Scholar
Karlin, R. Magnetite diagenesis in marine sediments from the Oregon continental margin. Journal of Geophysical Research 95, (1990). 4405 4419.CrossRefGoogle Scholar
Keigwin, L.D. The Little Ice Age and Medieval Warm Period in the Sargasso Sea. Science 274, (1996). 1504 1508.CrossRefGoogle ScholarPubMed
Keil, R.D., Tsamakis, E., Fuh, C.B., Giddings, J.C., and Hedges, J.I. Mineralogical and textural controls on the organic composition of coastal marine sediments: Hydrodynamic separation using SPLITT-fractionation. Geochimica et Cosmochimica Acta 58, (1994). 879 893.CrossRefGoogle Scholar
Kirby, M.E., Domack, E.W., and McClennen, C.E. Magnetic stratigraphy and sedimentology of Holocene glacial marine deposits in the Palmer Deep, Bellingshausen Sea, Antarctica: Implications for climate change?. Marine Geology 152, (1998). 247 259.CrossRefGoogle Scholar
Korean Ocean Research and Development Institute, (1996). Report on the Antarctic Investigation of the Marine Geology in 1996. BSPG00252-935-7, 280, pp.Google Scholar
Kreutz, K.J., Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S.I., and Pitalwala, I.I. Bipolar changes in atmospheric circulation during the Little Ice Age. Science 277, (1997). 1294 1296.CrossRefGoogle Scholar
Lamb, H.H. The early medieval warm epoch and its sequel. Palaeogeography, Palaeoclimatology, Palaeoecology 1, (1965). 13 37.CrossRefGoogle Scholar
Leventer, A., and Dunbar, R.B. Recent diatom record of McMurdo Sound, Antarctica: Implications for the history of sea-ice extent. Paleoceanography 3, (1988). 373 386.CrossRefGoogle Scholar
Leventer, A., Domack, E.W., Ishman, S.E., Brachfeld, S., McClennen, C.E., and Manley, P. Productivity cycles of 200–300 years in the Antarctic Peninsula region: Understanding linkage among the sun, atmosphere, oceans, sea ice, and biota. Geological Society of America Bulletin 108, (1996). 1626 1644.2.3.CO;2>CrossRefGoogle Scholar
Lopez, O., Garcia, M.A., Gomis, D., Rojas, P., Sospedra, J., and Sanchez-Arcilla, A. Hydrographic and hydrodynamic characteristics of the eastern basin of the Bransfield Strait (Antarctica). Deep-Sea Research 46, (1999). 1755 1778.CrossRefGoogle Scholar
Mosley-Thompson, E. Holocene climate changes recorded in an East Antarctic ice core. Jones, P.D., Bradley, R.S., and Jouzel, J. Climatic Variations and Forcing Mechanisms of the last 2000 years. NATO ASI Series 41 (1996). Springer-Verlag, Berlin. 243 262.Google Scholar
Müller, P.J., and Schneider, R. An automated leaching method for the determination of opal in sediments and particulate matter. Deep-Sea Research 40, (1993). 425 444.CrossRefGoogle Scholar
Nesje, A., and Kvamme, M. Holocene glacier and climate variations in western Norway: Evidence for early Holocene glacier demise and multiple neoglacial events. Geology 19, (1991). 610 612.2.3.CO;2>CrossRefGoogle Scholar
Nittrouer, C.A., Sternberg, R.W., Carpenter, R., and Bennett, J.J. The use of Pb-210 geochronology as a sedimentological tool: Application to the Washington continental shelf. Marine Geology 31, (1979). 297 316.CrossRefGoogle Scholar
O'Brien, S.R., Mayewski, P.A., Meeker, L.D., Meese, D.A., Twickler, M.S., and Whitlow, S.I. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270, (1995). 1962 1964.CrossRefGoogle Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, (1999). 429 436.CrossRefGoogle Scholar
Pielou, E.C. After the Ice Age. (1991). Univ. of Chicago Press, Chicago.CrossRefGoogle Scholar
Prieto, M.J., Canals, M., Ercilla, G., and de Batist, M. Structure and geodynamic evolution of the central Bransfield Basin (NW Antarctica) from seismic reflection data. Marine Geology 149, (1998). 17 38.CrossRefGoogle Scholar
Pudsey, C.J., Barker, P.J., and Larter, R.D. Ice sheet retreat from the Antarctic Peninsula continental shelf. Continental Shelf Research 14, (1994). 1647 1675.CrossRefGoogle Scholar
Rebesco, M., Larter, R.D., Barker, P.F., Camerlenghi, A., and Vanneste, L.E. History of sedimentation on the continental rise west of the Antarctic Peninsula. Cooper, A.K., and Barker, P.F. Geology and Seismic Stratigraphy of the Antarctic Margin II. (1997). American Geophysical Union, Washington. 28 49.Google Scholar
Roberts, N. (1998). The Holocene. An Environmental History, Blackwell, Oxford.Google Scholar
Shevenell, A. E., Domack, E. W., and Kernan, G. M. (1996). Record of Holocene paleoclimate change along the Antarctic Peninsula: Evidence from glacial marine sediments, Lallenmand Fjord.. In Climatic Succession and Glacial Record of the Southern HemisphereM. R. Banks and P. G. Quilty, Eds., pp. 5564. Papers and Proceedings of the Royal Society of Tasmania 130.Google Scholar
Stuiver, M., and Braziunas, T.F. Atmospheric 14C and century-scale solar oscillations. Nature 338, (1989). 405 408.CrossRefGoogle Scholar
Stuiver, M., and Grootes, P.M. GISP2 oxygen isotope ratios. Quaternary Research 53, (2000). 277 284.CrossRefGoogle Scholar
Stuiver, M., Denton, G.H., Hughes, T.J., and Fastook, J.L. History of the marine ice sheet in west Antarctica during the last glaciation: A working hypothesis. Denton, G., and Hughes, T. The Last Great Ice Sheets. (1981). Wiley, New York. 319 436.Google Scholar
Taylor, F., Whitehead, J., and Domack, E. Holocene paleoclimate change in the Antarctic Peninsula: Evidence from the diatom, sedimentary and geochemical record. Marine Micropaleontology 41, (2001). 25 43.CrossRefGoogle Scholar
Vaughan, D.G., and Doake, C.S.M. Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature 379, (1996). 328 331.CrossRefGoogle Scholar
Wefer, G., Fischer, G., Fütterer, D.K., and Gersonde, R. Seasonal particle flux in the Bransfield Strait, Antarctica. Deep-Sea Research 35, (1988). 891 898.CrossRefGoogle Scholar
Wigley, T.M.L. The climate of the last 10,000 years and the role of the sun. Stepheson, F.R., and Wolfendale, A.W. Secular Solar and Geomagnetic Variations in the Last 10,000 Years. (1988). Kluwer Academic, Dordrecht. 209 224.Google Scholar
Wigley, T.M.L., and Kelly, P.M. Holocene climatic change, 14C wiggles and variations in solar irradiance. Philosophical Transactions of Royal Society of London 330A, (1990). 547 560.Google Scholar
Yoon, H.I., Han, M.W., Park, B.K., Oh, J.K., and Chang, S.K. Depositional environment of near-surface sediments King George Basin, Bransfield Strait, Antarctica. Geo-Marine Letters 14, (1994). 1 9.CrossRefGoogle Scholar