Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T20:14:38.851Z Has data issue: false hasContentIssue false

Tropical Climatic Variation on the Pacific Slopes of the Ecuadorian Andes Based on a 25,000-Year Pollen Record from Deep-Sea Sediment Core Tri 163-31B

Published online by Cambridge University Press:  20 January 2017

Linda E. Heusser
Affiliation:
Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964
Nicholas J. Shackleton
Affiliation:
Godwin Laboratory for Quaternary, Research, Free School Lane, University of Cambridge, Cambridge CB2 3RS, UK

Abstract

Marine sediments from 3°37′S, 83°58′W yield a well-dated pollen record of equatorial Andean vegetation. Moderate development of Podocarpus -high montane rainforest (∼34,000-28,000 yr B.P.) and increase of high Andean grassland pollen (∼28,000-16,000 yr B.P.) imply an extended dry, cool glacial period following a brief interstade. Rapid stepwise expansion in coastal and montane forest pollen characterizes the deglacial interval. The general correspondence between pollen and oxygen isotope variations in Tri 163-31B suggests that tropical climatic variations in the northern Andes were basically coherent with northern hemisphere glacier variations.

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta-Solia, M. (1977). “Fitogeografia Ecuador,” pp. 1295, Instituto Panamericano de Geografia e Historia, Ecuador.Google Scholar
Boyle, E. A. (1983). Chemical accumulation variations under the Peru Current during the past 130,000 years. Journal of Geophysical Research 88, 76677680.Google Scholar
Clapperton, C. (1993a). Nature of environmental changes in South America at the last glacial maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 3, 89208.Google Scholar
Clapperton, C. (1993b). “Quaternary Geology and Geomorphology of South America,” Elsevier, New York.Google Scholar
Diaz, H. E, and Markgraf, V. (1992). “El Nino,” Cambridge Univ. Press. Cambridge.Google Scholar
Hansen, B. Wright, H. E. Jr., and Bradbury, J. P. (1984). Pollen studies in the Junin area, central Peruvian Andes. Geological Society of America Bulletin 95, 14541465.Google Scholar
Heusser, L. E. (1977). Pollen distribution in the northeast Pacific Ocean. Quaternary Research 7, 4562.Google Scholar
Heusser, L. E. (1988). Pollen distribution in marine sediments on the continental margin off northern California. Marine Geology 80, 131147.Google Scholar
Heusser, L. E., and Balsam, W. L. (1977). Pollen distribution in the Northeast Pacific Ocean. Quaternary Research 7, 4562.Google Scholar
Heusser, L. E., and Stock, C. E. (1984). Preparation techniques for concentrating pollen from marine sediments and other sediments with low pollen density. Pafynofogy 8, 225227.Google Scholar
Hooghiemstra, H. (1984). “Vegetational and Climatic History of the High Plain of Bogota, Colombia: A continuous record of the last 3.5 million years.” J. Cramer, Vaduz.Google Scholar
Hueck, K. (1966). “Die Walder Siidamerikas.” G. Fischer Verlag, Stuttgart.Google Scholar
Johnson, A. M. (1976). The climate of Peru, Bolivia, and Ecuador. In “Climates of Central and South America” (Schwerdtfeger, W., Ed.), pp. 147218. Elsevier, Amsterdam.Google Scholar
Kuhry, P. Hooghiemstra, H. van Geel, B., and van der Hammen, T, (1994). The El Abra Stadial in the Eastern Cordillera of Columbia South America, Quaternary Science Reviews 12, 333343.Google Scholar
Ninkovich, D., and Shackleton, N. J. (1975). Distribution, stratigraphic position and age of ash layer “L”, in the Panama Basin region. Earth and Planetary Science Letters 27, 2034.Google Scholar
Rind, D., and Peteet, D. (1985). Terrestrial conditions at the late glacial maximum and CLIMAP sea-surface estimates. Are they consistent? Quaternary Research 24, 122.Google Scholar
Salgado Labouriau, M. L. (1973). “Contribuiao a Palinologia dos Cerrados” Universidade Sao Paulo, Sao Paulo.Google Scholar
Shackleton, N. J. Imbrie, J., and Hall, M. A. (1983). Oxygen and carbon isotope record of East Pacific core V19-30: Implications for the formation of deep water in the late Pleistocene North Atlantic, Earth and Planetary Science Letters 65, 233244.Google Scholar
Shackleton, N. J. Duplessy, J.-C. Arnold, M. Maurice, P. Hall, M. A., and Cartlidge, J. (1988). Radiocarbon age of last glacial Pacific deep water. Nature 335, 708711.Google Scholar
Van Campo, E. (1986). Monsoon fluctuations in two 20,000-yr B.P. oxygen-isotope pollen records off southwest India. Quaternary Research 26, 376388.Google Scholar
van der Hammen, T. (1978). Stratigraphy and environments of the Upper Quaternary of the El Abra corridor and rock shelters (Colombia). Palaeogeography, Palaeoclimatotogy, Palaeocology 25, U1162.Google Scholar
van der Hammen, T., and Gonzalez, E.. (1960). Holocene and Late Glacial climate and vegetation of p&ramo de Palacio (Eastern Cordillera, Colombia, South America). Geologie en Minjbouw 39, 737746.Google Scholar
Van Geel, B., and van der Hammen, T. (1973). Upper Quaternary vegetational and climatic sequence of the Fuquene area (eastern Cordillera, Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology 14, 992.Google Scholar
Ward, J. V., and Liu, K.-B. (Editors) (1988). Quaternary Palynology of Tropical Areas. Review of Palaeobotany and Palynology 55, 1247.Google Scholar