Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T01:09:00.588Z Has data issue: false hasContentIssue false

Timing of the last Deglaciation in the Sierra Nevada of the Mérida Andes, Venezuela

Published online by Cambridge University Press:  20 January 2017

Julien Carcaillet*
Affiliation:
ISTerre, Université de Grenoble 1, UMR CNRS 5275, F-38041 Grenoble, France
Isandra Angel
Affiliation:
Instituto de Ciencias de la Tierra, Universidad Central de Venezuela, Apdo. 3805, Caracas 1010-A, Venezuela
Eduardo Carrillo
Affiliation:
Instituto de Ciencias de la Tierra, Universidad Central de Venezuela, Apdo. 3805, Caracas 1010-A, Venezuela
Franck A. Audemard
Affiliation:
Fundación Venezolana de Investigaciones Sismológicas, FUNVISIS, El Llanito, Caracas 1030, Venezuela
Christian Beck
Affiliation:
ISTerre, Université de Savoie, UMR CNRS 5275, F-73376 Le Bourget-du-Lac, France
*
*Corresponding author at: ISTerre, 1381 rue de la Piscine, 38400 Saint Martin d'Hères, France. Fax: + 33 4 76 63 52 52. E-mail address:[email protected] (J. Carcaillet).

Abstract

In the tropical Mérida Andes (northwestern Venezuela), glacial landforms were found at altitudes between 2600 and 5000 m, corresponding to 600 km2 of ice cover during the maximum glacial extension. However, the lack of sufficient absolute age data prevents detailed reconstruction of the timing of the last deglaciation. On the northwestern flank of the Mucuñuque Massif, successive moraines and striated eroded basement surfaces were sampled for cosmogenic 10Be investigation. Their compilation with published data allows the establishment of a detailed chronology of the post-LGM glacier history. The oldest moraines (18.1 and 16.8 ka) correspond to the Oldest Dryas. Successive moraine ridges indicate stops in the overall retreat between the LGM and the Younger Dryas. The cold and short Older Dryas stadial has been identified. Results indicate that most of the ice withdrew during the Pleistocene. The dataset supports an intensification of the vertical retreat rate from ~ 25 m/ka during the late Pleistocene to ~ 310 m/ka during the Pleistocene/Holocene. Afterwards, the glacier was confined and located in the higher altitude zones. The altitude difference of the Younger Dryas moraines in the Mucubají, La Victoria and Los Zerpa valleys indicates a strong effect of valley orientation on the altitude of moraine development.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., Wolfe, B.B., Wolfe, A.P., Seltzer, G.O., Aravena, R., Mark, B.G., Polissar, P.J., Rodbell, D.T., Rowe, H.D., Vuille, M., (2003). Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 123138.CrossRefGoogle Scholar
Audemard, F.A., (1997). Holocene and historical earthquakes on the Boconó fault system, southern Venezuelan Andes: trench confirmation. Journal of Geodynamics 24, 1–4 155167.Google Scholar
Audemard, F.E., Audemard, F.A., (2002). Structure of the Mérida Andes, Venezuela: relations with the South America-Caribbean geodynamic interaction. Tectonophysics 345, 299327.CrossRefGoogle Scholar
Audemard, F.A., Pantosti, D., Machette, M., Costa, C., Okumura, K., Cowan, H., Diederix, H., Ferrer, C., Participants, Sawop. (1999). Trench investigation along the Mérida section of the Boconó fault (central Venezuelan Andes), Venezuela. Pavlides, S., Pantosti, D., Peizhen, Z. Earthquakes, Paleoseismology and Active Tectonics. Selected papers to 29th General Assembly of the Association of Seismology and Physics of the Earth's Interior (IASPEI), Thessaloniki, Greece, August 1997. Tectonophysics 308, 121.CrossRefGoogle Scholar
Audemard, F.A., Ollarves, R., Bechtold, M., Díaz, G., Beck, C., Carrillo, E., Pantosti, D., Diederix, H., (2008). Trench investigation on the main strand of the Boconó fault in its central section, at Mesa del Caballo, Mérida Andes, Venezuela. Tectonophysics 459, 3853.Google Scholar
Audemard, F.A., Beck, C., Carrillo, E., (2010). Deep-seated gravitational slope deformations along the active Boconó Fault in the central portion of the Mérida Andes, western Venezuela. Geomorphology 124, 3–4 164177.CrossRefGoogle Scholar
Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., (2008). A complete and easily accessible means of calculation surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195.CrossRefGoogle Scholar
Bellizzia, A., Pimentel, N., Bajo de Osuna, R., Ministerio de Minas e Hidrocarburos, . (1976). Mapa geológico-estructural de Venezuela. Scale 1: 500,000. Foninves, Caracas.Google Scholar
Bermúdez, M.A., Kohn, B., van der Beek, P., Bernet, M., O'Sullivan, P., Shagam, R., (2010). Spatial and temporal patterns of exhumation across the Venezuelan Andes: implications for Cenozoic Caribbean geodynamics. Tectonics 29, 10.1029/2009TC002635.Google Scholar
Blard, P.-H., Sylvestre, F., Tripati, A.K., Claude, C., Causse, C., Coudrain, A., Condom, T., Seidel, J.-L., Vimeux, F., Moreau, C., Dumoulin, J.-P., Lavé, J., (2011). Lake highstands on the Altiplano (Tropical Andes) contemporaneous with Heinrich 1 and the Younger Dryas: new insights from 14C, U–Th dating and δ18O of carbonates. Quaternary Science Review 30, 39733989.Google Scholar
Brown, E.T., Edmond, J.M., Raisbeck, G.M., Yiou, F., Kurz, M.D., Brook, E.J., (1991). Examination of surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al. Geochimica et Cosmochimica Acta 55, 22692283.Google Scholar
Carrillo, E., Yépez, S., (2008). Evolución de glaciares en Venezuela: glaciares de los Picos Humboldt y Bonpland. Boletín Geológico 42, 97108.Google Scholar
Carrillo, E., Audemard, F., Beck, C., Cousin, M., Jouanne, F., Cano, V., Castilla, R., Melo, L., Villemin, T., (2006). A Late Pleistocene–Holocene natural seismograph along the Boconó Fault (Mérida Andes, Venezuela): the moraine-dammed Los Zerpa paleo-lake. Bulletin de la Société Géologique de France 177, 317.CrossRefGoogle Scholar
Carrillo, E., Beck, C., Audemard, F.A., Moreno, M., Ollarves, R., (2008). Disentangling Late Quaternary climatic and seismo-tectonic controls on Lake Mucubají sedimentation (Mérida Andes, Venezuela). Palaeogeography, Palaeoclimatology, Palaeoecology 259, 284300.CrossRefGoogle Scholar
Chmeleff, J., von Blanckenburg, F., Kossert, K., Jakob, J., (2010). Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research B 268, 2 192199.Google Scholar
Dirszowsky, R.W., Mahaney, W.C., Hodder, K.R., Milner, M.W., Kalm, V., Bezada, M., Beukens, R.P., (2005). Lithostratigraphy of the Mérida (Wisconsinan) glaciation and Pedregal interstade, Mérida Andes, northwestern Venezuela. Journal of South American Earth Sciences 19, 525536.Google Scholar
Dunai, T.J., (2010). Cosmogenic Nuclides. Principles, Concepts and Applications in the Earth Surface Sciences. Cambridge University Press, (198 pages).Google Scholar
Dunne, J., Elmore, D., Muzikar, P., (1999). Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 27, 1–2 311.Google Scholar
Garrity, C.P., Hackley, P.C., Urbani, F., (2004). Digital shaded-relief map of Venezuela. http://pubs.usgs.gov/of/2004/1322 .Google Scholar
Glasser, N.F., Harrison, S., Schnabel, C., Fabel, D., Jansson, K.N., (2012). Younger Dryas and early Holocene age glacier advances in Patagonia. Quaternary Science Reviews 58, 717.Google Scholar
Gonzales de Juane, C., Iturralde de Arozena, J., Picard, X., (1980). Geología de Venezuela y de sus cuencas petrolíferas. 2 vol, Foninves, (1030 pp.).Google Scholar
Heusser, C.J., (1993). Late-glacial of southern South America. Quaternary Science Reviews 12, 345350.CrossRefGoogle Scholar
Israde-Alcántara, I., Bischoff, J.L., Domínguez-Vázquez, G., Li, H.-C., DeCarli, P.S., Bunch, T.E., Wittke, J.H., Weaver, J.C., Firestone, R.B., West, A., Kennett, J.P., Mercer, C., Xie, S., Richman, E.K., Kinzie, C.R., Wolbach, W.S., (2012). Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proceeding of the National Academy of Sciences 109, 13 738747.Google Scholar
Jahn, A., (1912). La cordillera venezolana de los Andes. Revista Técnica del Ministerio de Obras Públicas 21, 2 451488.Google Scholar
Jahn, A., (1925). Observaciones glaciológicas en los Andes Venezolanos. Cultura Venezolana 64, 265280.Google Scholar
Kalm, V., Mahaney, W.C., (2011). Late Quaternary glaciations in the Venezuelan (Mérida) Andes. Ehlers, J., Gibbard, P. Quaternary Glaciations-Extent and Chronology Part IV — A Closer Look. Oxford University Press, Oxford.835841.Google Scholar
Kaplan, M.R., Strelin, J.A., Schaefer, J.M., Denton, G.H., Finkel, R.C., Schwartz, R., Putnam, A.E., Vandergoes, M.J., Goehring, B.M., Travis, S.G., (2011). In-situ cosmogenic 10Be production rate at Lago Argentino, Patagonia: implications for late-glacial climate chronology. Earth and Planetary Science Letters 309, 2132.CrossRefGoogle Scholar
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., von Gostomski Lierse, Ch., Kossert, K., Maitia, M., Poutivtsev, M., Remmert, A., (2009). A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research B 268, 2 187191.Google Scholar
Lal, D., (1991). Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 429439.CrossRefGoogle Scholar
Lea, D.W., Pak, D.K., Peterson, L.C., Hughen, K.A., (2003). Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science 301, 13611364.Google Scholar
Mahaney, W.C., Milner, M.W., Voros, J., Kalm, V., Hütt, G., Bezada, M., Hancock, R.G.V., Autreiter, S., (2000). Stratotype for the Mérida Glaciation at Pueblo Llano in the Northern Venezuela Andes. Journal of South American Earth Sciences 13, 761774.Google Scholar
Mahaney, W.C., Russell, S.E., Milner, M.W., Kalm, V., Bezada, M., Hancock, R.G.V., Beukens, R.P., (2001). Paleopedology of Middle Wisconsin/Weichselian paleosols in the Mérida Andes, Venezuela. Geoderma 104, 215237.CrossRefGoogle Scholar
Mahaney, W.C., Dirszowsky, R.W., Milner, M.W., Harmsen, R., Finkelstein, S., Kalm, V., Bezada, M., Hanckock, R.G.V., (2007a). Soil stratigraphy and ecological relationships of a late Glacial-Holocene fluvial terrace sequence, Sierra Nevada National Park, Northern Venezuelan Andes. Journal of South American Earth Sciences 23, 4660.CrossRefGoogle Scholar
Mahaney, W.C., Dirszowsky, R.W., Kalm, V., (2007b). Comment on “Quaternary deglacial history of the Mérida Andes, Venezuela” by N.D. Stansell, et al. Journal of Quaternary Science 22, 15.Google Scholar
Mahaney, W.C., Milner, M.W., Kalm, V., Dirszowsky, R.W., Hancock, R.G.V., Beukens, R.P., (2008). Evidence for a Younger Dryas glacial advance in the Andes of northwestern Venezuela. Geomorphology 96, 199211.Google Scholar
Merchel, S., Herpers, U., (1999). An update on radiochemical separation techniques for the determination of long-lived radionuclides via accelerator mass spectrometry. Radiochimica Acta 84, 215219.Google Scholar
Polissar, P.J., Abbott, M.B., Wolfe, A.P., Bezada, M., Rull, V., Bradley, R.S., (2006). Solar modulation of Little Ice Age climate in the tropical Andes. Proceedings of the National Academy of Science 103, 89378942.CrossRefGoogle ScholarPubMed
Pulwarty, R.S., Barry, R.G., Hurst, C.M., Sellinger, K., Mogollon, L.E., (1998). Precipitation in the Venezuelan Andes in the context of regional climate. Meteorology and Atmospheric Physics 67, 217237.Google Scholar
Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vandergoes, M., Denton, G.H., Kaplan, M.R., Finkel, R.C., Schwartz, R., Goehring, B.M., Kelley, S.E., (2010). In situ cosmogenic 10Be production-rate calibration from the Southern Alps, New Zealand. Quaternary Geochronology 5, 392409.Google Scholar
Rod, E., (1956). Strike-slip faults of northern Venezuela. Bulletin of the American Association of Petroleum Geologists 40, 457476.Google Scholar
Rull, V., (1996). Late Pleistocene and Holocene climates of Venezuela. Quaternary International 31, 8594.CrossRefGoogle Scholar
Rull, V., (1998). Palaeoecology of pleniglacial sediments from the Venezuelan Andes. Palynological record of El Caballo stadial, sedimentation rates and glacier retreat. Review of Palaeobotany and Palynology 99, 95114.Google Scholar
Rull, V., (1999). Palaeoclimatology and sea-level history in Venezuela. New data, land–sea correlations and proposals for future studies in the frame of the IGBP-PAGES Project. Interciencia 24, 92101.Google Scholar
Rull, V., (2005). A Middle Wisconsin interstadial in the northern Andes. Journal of South American Earth Sciences 19, 173179.Google Scholar
Rull, V., Schubert, C., (1989). The Little Ice Age in the tropical Venezuelan Andes. Acta Cienifica Venezolana 4, 7173.Google Scholar
Rull, V., Abbott, M.B., Polissar, P.J., Wolfe, A.P., Bezada, M., Bradley, R.S., (2005). 15,000-yr pollen record of vegetation change in the high altitude tropical Andes at Laguna Verde Alta, Venezuela. Quaternary Research 64, 308317.Google Scholar
Salgado-Labouriau, M.L., (1980). A pollen diagram of the Pleistocene–Holocene boundary of lake Valencia, Venezuela. Review of Palaeobotany and Palynology 38, 297312.Google Scholar
Salgado-Labouriau, M.L., (1989). Late Quaternary climatic oscillations in the Venezuelan Andes. Biology International 18, 1214.Google Scholar
Salgado-Labouriau, M.L., Schubert, C., (1976). Palynology of Holocene peat bogs from central Venezuelan Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 19, 147156.Google Scholar
Salgado-Labouriau, M.L., Schubert, M.L., Valastro, S.J., (1977). Paleoecologic analysis of a Late Quaternary terrace from Mucubají, Venezuelan Andes. Journal of Biogeography 4, 313325.Google Scholar
Salgado-Labouriau, M.L., Bradley, R.S., Yuretich, R.F., Weingarten, B., (1992). Paleoecological analysis of the sediments of Lake Mucubají, Venezuelan Andes. Journal of Biogeography 19, 317327.Google Scholar
Schubert, C., (1970). Glaciation of the Sierra de Santo Domingo, Venezuelan Andes. Quaternario 13, 225246.Google Scholar
Schubert, C., (1972). Geomorphology and glacier retreat in the Pico Bolívar area, Sierra Nevada de Mérida, Venezuela. Zeitschrift für Gletscherkunde und Glazialgeologie 8, 189202.Google Scholar
Schubert, C., (1974). Late Pleistocene Mérida glaciation, Venezuelan Andes. Boreas 3, 147152.Google Scholar
Schubert, C., (1975). Glaciation and periglacial morphology in the northeastern Venezuelan Andes. Eiszeitalter und Gegenwart 26, 196211.Google Scholar
Schubert, C., (1980). Contribución al inventario mundial de glaciares. Boletín de la Sociedad Venezolana de Ciencias Naturales 34, 137 267279.Google Scholar
Schubert, C., (1982). Neotectonics of Boconó Fault, western Venezuela. Tectonophysics 85, 205220.Google Scholar
Schubert, C., (1998). Glaciers of Venezuela. Williams, R.S., Ferrigno, J.G. Satellite Image Atlas of Glaciers of the World. U.S. Geological Survey Professional Paper 1386-I, Washington D.C. .Google Scholar
Schubert, C., Clapperton, C.M., (1990). Quaternary glaciations in the northern Andes (Venezuela, Colombia and Ecuador). Quaternary Science Reviews 9, 2–3 123135.Google Scholar
Schubert, C., Rinaldi, M., (1987). Nuevos datos sobre la cronología del estadio tardio de la Glaciacion Mérida, Andes Venezolanos. Acta Científica Venezolana 38, 135136.Google Scholar
Schubert, C., Sifontes, R., (1970). Boconó fault, Venezuelan Andes: evidence of postglacial movement. Science 170, 6669.CrossRefGoogle ScholarPubMed
Schubert, C., Valastro, S., (1974). Late Pleistocene glaciation of Páramo de La Culata, north-central Venezuelan Andes. Geologische Rundschau 63, 516538.Google Scholar
Schubert, C., Vivas, L., (1993). El Cuaternario de la Cordillera de Mérida; Andes Venezolanos. Universidad de Los Andes/Fundación Polar, Mérida, Venezuela.(345 pp.).Google Scholar
Seltzer, G.O., Rodbell, D.T., Baker, P.A., Fritz, S.C., Tapia, P.M., Rowe, H.D., Dunbar, R.B., (2002). Early warming of tropical South America at the last glacial-interglacial transition. Science 296, 5573 16851686.Google Scholar
Sievers, W., (1885). Über Schneeverhältnisse in der Cordillere Venezuelas. Jahresbericht der Geographischen Gesellschaft in München 10, 5457.Google Scholar
Stansell, N.D., Abbott, M.B., Polissar, P.J., Wolfe, A.P., Bezada, M., Rull, V., (2005). Late Quaternary deglacial history of the Mérida Andes, Venezuela. Journal of Quaternary Science 20, 7–8 801812.CrossRefGoogle Scholar
Stansell, N.D., Polissar, P.J., Abbott, M.B., (2007). Last glacial maximum equilibrium-line altitude and paleo-temperature reconstructions for the Cordillera de Mérida. Venezuelan Andes. Quaternary Research 67, 115127.CrossRefGoogle Scholar
Stansell, N.D., Abbott, M.B., Rull, V., Rodbell, D.T., Bezada, M., Montoya, E., (2010). Abrupt Younger Dryas cooling in the northern tropics recorded in lake sediments from the Venezuelan Andes. Earth and Planetary Science Letters 293, 154163.Google Scholar
Stone, J.O., (2000). Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, 2375323759.Google Scholar
Stuiver, M., Grootes, P.M., Braziunas, T.F., (1995). The GISP2 δ18O climate record of the Past 16,500 years and the role of the sun, ocean, and volcanoes. Quaternary Research 44, 3 341354.Google Scholar
Sylvestre, F., Servant, M., Servant-Vildary, S., Causse, C., Fournier, M., Ybert, J.P., (1999). Lake-level chronology on the southern Bolivian Altiplano (18°–23°S) during late-glacial time and the early Holocene. Quaternary Research 51, 5466.CrossRefGoogle Scholar
van't Veer, R., Islebe, G.A., Hooghiemstra, H., ('t Veer et al., 2000). Climatic change during the Younger Dryas chron in northern South America: a test of the evidence. Quaternary Science Reviews 19, 18211835.Google Scholar
Villagrán, M., (1993). Una Interpretación climática del registro palinológico del ultimo ciclo glacial-postglacial en sudamérica. Bulletin de l'Institut français d'études andines 22, 1 243258.Google Scholar
Wesnousky, S.G., Aranguren, R., Rengifo, M., Owen, L.A., Caffee, M.W., Krishna Murari, M., Pérez, O.J., (2012). Toward quantifying geomorphic rates of cristal displacement, landscape development, and the age of glaciation in the Venezuelan Andes. Geomorphology 141–142, 99113.Google Scholar
Yépez, S., Carrillo, E., (2009). Evolución de los glaciares venezolanos, picos Humboldt y Bonpland. 3er ciclo de conferencias y segundo curso internacional de cambios ambientales globales. Caracas. Google Scholar