Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T19:11:47.303Z Has data issue: false hasContentIssue false

Timing of glacier advances and climate in the High Tatra Mountains (Western Carpathians) during the Last Glacial Maximum

Published online by Cambridge University Press:  20 January 2017

Michał Makos*
Affiliation:
Department of Climate Geology, Institute of Geology, University of Warsaw, Żwirkii Wigury, 93 02-089 Warsaw, Poland
Jan Dzierżek
Affiliation:
Department of Climate Geology, Institute of Geology, University of Warsaw, Żwirkii Wigury, 93 02-089 Warsaw, Poland
Jerzy Nitychoruk
Affiliation:
Department of Geology, Pope John Paul II State School of Higher Education in Biała Podlaska, ul. Sidorska, 95/97 21-500 Biała Podlaska, Poland
Marek Zreda
Affiliation:
Hydrology and Water Resources Department, University of Arizona, Tucson, AZ 85721, USA
*
* Corresponding author.E-mail addresses: [email protected] (M. Makos), [email protected] (J. Dzierżek), [email protected] (J. Nitychoruk), [email protected] (M. Zreda).

Abstract

During the Last Glacial Maximum (LGM), long valley glaciers developed on the northern and southern sides of the High Tatra Mountains, Poland and Slovakia. Chlorine-36 exposure dating of moraine boulders suggests two major phases of moraine stabilization, at 26–21 ka (LGM I — maximum) and at 18 ka (LGM II). The dates suggest a significantly earlier maximum advance on the southern side of the range. Reconstructing the geometry of four glaciers in the Sucha Woda, Pańszczyca, Mlynicka and Velicka valleys allowed determining their equilibrium-line altitudes (ELAs) at 1460, 1460, 1650 and 1700 m asl, respectively. Based on a positive degree-day model, the mass balance and climatic parameter anomaly (temperature and precipitation) has been constrained for LGM I advance. Modeling results indicate slightly different conditions between northern and southern slopes. The N–S ELA gradient finds confirmation in slightly higher temperature (at least 1 °C) or lower precipitation (15%) on the south-facing glaciers during LGM I. The precipitation distribution over the High Tatra Mountains indicates potentially different LGM atmospheric circulation than at the present day, with reduced northwesterly inflow and increased southerly and westerly inflows of moist air masses.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, R., Siegert, M., and Payne, A.J. Reconstructing glacier-based climates of LGM Europe and Russia — part 2: a dataset of LGM precipitation/temperature relations derived from degree-day modeling of paleo glaciers. Climate of the Past 4, (2008). 249263.CrossRefGoogle Scholar
Ballantyne, C.K. Extent and deglacial chronology of the last British–Irish Ice Sheet: implications of exposure dating using cosmogenic isotopes. Journal of Quaternary Science 25, (2010). 515534.Google Scholar
Baumgart-Kotarba, M., and Kotarba, A. Würm glaciation in the Biała Woda Valley, High Tatra Mountains. Studia Geomorphologica Carpatho-Balcanica 31, (1997). 5781.Google Scholar
Baumgart-Kotarba, M., and Kotarba, A. Deglaciation in the Sucha Woda and Panszczyca valleys in the Polish High Tatras. Studia Geomorphologica Carpatho-Balcanica 35, (2001). 738.Google Scholar
Bičarova, S., Pribullova, A., and Mačutek, J. Spatial distribution of precipitation in Skalnata Dolina Valley, the High Tatras, Slovakia. Ostapowicz, K., and Kozak, J. Forum Carpathicum. (2010). Institute of Geography and Spatial Management, Jagiellonian University, Kraków.Google Scholar
Braithwaite, R.J. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance. Journal of Glaciology 41, (1995). 153160.Google Scholar
Braithwaite, R.J., and Zhang, Y. Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model. Journal of Glaciology 46, (2000). 714.CrossRefGoogle Scholar
Butrym, J., Lindner, L., and Okszos, D. Formy rzeźby, wiek TL osadów i rozwój lodowców ostatniego zlodowacenia w Dolinie Małej Łąki, Tatry Zachodnie. Przegląd Geologiczny 38, 1 (1990). 2026.Google Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., and McCabe, M. The Last Glacial Maximum. Science 325, (2009). 710714.Google Scholar
Delmas, M., Calvet, M., Gunnell, Y., Braucher, R., and Bourlès, D. Palaeogeography and 10Be exposure-age chronology of Middle and Late Pleistocene glacier systems in the northern Pyrenees: implications for reconstructing regional palaeoclimates. Palaeogeography, Palaeoclimatology, Palaeoecology 305, (2011). 109122.CrossRefGoogle Scholar
Desilets, D., and Zreda, M. Spatial and temporal distribution of secondary cosmic ray nucleon intensities and applications to in situ cosmogenic dating. Earth and Planetary Science Letters 206, (2003). 2142.CrossRefGoogle Scholar
Desilets, D., Zreda, M., and Prabu, T. Extended scaling factors for in situ cosmogenic nuclides: new measurements at low latitude. Earth and Planetary Science Letters 246, (2006). 265276.Google Scholar
Desilets, D., Zreda, M., Almas, I.P.F., and Elmore, D. Determination of cosmogenic 36Cl in rocks by isotope dilution: innovations, validation and error propagation. Chemical Geology 233, 3–4 (2006). 185195.Google Scholar
Dzierżek, J. Paleogeografia wybranych obszarów Polski w czasie ostatniego zlodowacenia. Acta Geographica Lodziensia 95, (2009). 1112.Google Scholar
Dzierżek, J., Lindner, L., and Nitychoruk, J. Late Quaternary deglaciation of the eastern Polish Tatra Mts. Bulletin of the Polish Academy of Science-Earth 34, (1986). 395407.Google Scholar
Fairbanks, R. A 17000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 340, (1989). 637642.Google Scholar
Florineth, D., and Schlüchter, C. Alpine evidence for atmospheric circulation patterns in Europe during the Last Glacial Maximum. Quaternary Research 54, (2000). 295308.Google Scholar
Guyodo, Y., and Valet, J.-P. Global changes in intensity of the Earth's magnetic field during the past 800 kyr. Nature 39, (1999). 249252.Google Scholar
Haeberli, W. Glacier fluctuations and climate change detection. Geografia Fisica e Dinamica Quarternaria 18, (1996). 191199.Google Scholar
Halicki, B. La glaciation quaternaire du versant nord de la Tatra (in Polish with French summary). SprawozdaniePIG 5, 2–4 (1930). 377534.Google Scholar
Halouzka, R. Stratigraphical subdivision of sediments of the Last Glaciation in the Czechoslovak Carpathians and their correlation with the contemporary Alpine and North European Glaciations. Šibrava, V. Quaternary Glaciations in the Northern Hemisphere. (1977). INQUA, Prague. 8390.Google Scholar
Hemming, S. Heinrich events: massive Late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics 42, (2004). 143.Google Scholar
Heyman, B.M., Heyman, J., Fickert, T., and Hrabor, J.M. Paleo-climate of the central European uplands during the Last Glacial Maximum based on glacier mass-balance modeling. Quaternary Research 79, (2013). 4954.CrossRefGoogle Scholar
Hughes, P.D., Woodward, J.C., van Calsteren, P.C., Thomas, L.E., and Adamson, K. Pleistocene ice caps on the coastal mountains of the Adriatic Sea: palaeoclimatic and wider palaeoenvironmental implications. Quaternary Science Reviews 29, (2010). 36903708.Google Scholar
Hughes, P.D., Woodward, J.C., van Calsteren, P.C., and Thomas, L.E. The glacial history of the Dinaric Alps, Montenegro. Quaternary Science Reviews 30, (2011). 33933412.Google Scholar
Ivy-Ochs, S., Kerschner, H., and Schlüchter, C. Cosmogenic nuclides and the dating of Late Glacial and Early Holocene glacier variations: the Alpine perspective. Quaternary International 164–165, (2007). 5363.Google Scholar
Ivy-Ochs, S., Kerschner, H., Reuther, A., Preusser, F., Maisch, M., Kubik, P.W., and Schlüchter, C. Chronology of the last glacial cycle in the European Alps. Journal of Quaternary Science 23, (2008). 559573.Google Scholar
Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P.W., and Schlüchter, C. Latest Pleistocene and Holocene glacier variation in the European Alps. Quaternary Science Reviews 28, (2009). 21372149.Google Scholar
Jost, A., Lunt, D., Kageyama, M., Abe-Ouchi, A., Peyron, O., Valdes, P.J., and Ramstein, G. High resolution simulations of the last glacial maximum climate over Europe: a solution to discrepancies with continental paleoclimatic reconstructions?. Climate Dynamics 24, (2005). 577590.Google Scholar
Kageyama, M., Lainé, A., Abe-Ouchi, A., Braconnot, P., Cortijo, E., Crucifix, M., de Vernal, A., Guiot, J., Hewitt, C.D., Kitoh, A., Kucera, M., Marti, O., Ohgaito, R., Otto-Bliesner, B., Peltier, W.R., Rosell-Melé, A., Vettoretti, G., Weber, S.L., and Yu, Y. Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP models, MARGO sea-surface temperatures and pollen-based reconstructions. Quaternary Science Reviews 25, (2006). 20822102.Google Scholar
Kelly, M., Buoncistriani, J.-F., and Schlüchter, C. A reconstruction of the last glacial maximum (LGM) ice-surface geometry in the western Swiss Alps and contiguous Alpine regions in Italy and France. Eclogae Geoogicae Helvetiae 97, (2004). 5775.CrossRefGoogle Scholar
Kern, Z., and László, P. Size specific steady-state accumulation–area ratio: an improvement for equilibrium-line estimation of small palaeoglaciers. Quaternary Science Reviews 29, (2010). 27812787.Google Scholar
Klimaszewski, M. Rzeźba Tatr Polskich Warszawa. (1988). Google Scholar
Křížek, M., and Mida, P. The influence of aspect and altitude on the size, shape and spatial distribution of glacial cirques in the High Tatras (Slovakia, Poland). Geomorphology 198, (2013). 5768.Google Scholar
Kuhlemann, J., Rohling, E.J., Krumrei, I., Kubik, P., Ivy-Ochs, S., and Kucera, M. Regional synthesis of Mediterranean circulation during the Last Glacial Maximum. Science 321, (2008). 13381340.Google Scholar
Kuhlemann, J., Milivojevic, M., Krumrei, I., and Kubik, P. Last glaciation of the Sara Range (Balkan Peninsula): increasing dryness from the LGM to the Holocene. Austrian Journal of Earth Sciences 102, (2009). 146158.Google Scholar
Kuhlemann, J., Gachev, E., Gikov, A., Nedkov, S., Krumrei, I., and Kubik, P. Glaciation in the Rila Mountains (Bulgaria) during the Last Glacial Maximum. Quaternary International 293, (2013). 5162.Google Scholar
László, P., Kern, Z., and Nagy, B. Late Pleistocene glaciers in the western Rodna Mountains, Romania. Quaternary International 293, (2013). 7991.Google Scholar
Lindner, L., Dzierżek, J., Marciniak, B., and Nitychoruk, J. Outline of Quaternary glaciations in the Tatra Mountains: their development, age and limits. Geological Quarterly 47, 3 (2003). 269280.Google Scholar
Lowe, J.J., Rasmussen, S.O., Bjorck, S., Hoek, W.Z., Steffensen, J.P., Walker, M.J.C., Yu, Z.C. The INTIMATE Group Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quaternary Science Reviews 27, (2008). 617.Google Scholar
Lukniš, M. Reliéf Vysokých Tatier a ich predpolia. (1973). Veda, Bratislava. 375 Google Scholar
Makos, M., and Nitychoruk, J. Last Glacial Maximum climatic conditions in the Polish part of the High Tatra Mountains (Western Carpathians). Geological Quarterly 55, (2011). 253268.Google Scholar
Makos, M., Nitychoruk, J., and Zreda, M. Deglaciation chronology and paleoclimate of the Pięciu Stawów Polskich/Roztoki Valley, High Tatra Mountains, Western Carpathians since the Last Glacial Maximum, inferred from 36Cl exposure dating and glacier–climate modeling. Quaternary International 293, (2013). 6378.CrossRefGoogle Scholar
Makos, M., Nitychoruk, J., and Zreda, M. The Younger Dryas climatic conditions in the Za Mnichem Valley (Polish High Tatra Mountains) based on exposure-age dating and glacier–climate modeling. Boreas 42, 3 (2013). 745761.Google Scholar
Mentlik, P., Engel, Z., Braucher, R., Léanni, L., and Team, Aster Chronology of the Late Weichselian glaciation in the Bohemian Forest in Central Europe. Quaternary Science Reviews 65, (2013). 120128.Google Scholar
Mindrescu, M., Evans, I.S., and Cox, N.J. Climatic implications of cirque distribution in the Romanian Carpathians: palaeo wind directions during glacial periods. Journal of Quaternary Science 25, 6 (2010). 875888.Google Scholar
Niedźwiedź, T. Climate of the Tatra Mountains. Mountain Research and Development 12, (1992). 131146.Google Scholar
Ohmura, A., Kasser, P., and Funk, M. Climate at the equilibrium line of glaciers. Journal of Glaciology 38, 130 (1992). 397411.Google Scholar
Ohno, M., and Hamano, Y. Geomagnetic poles over the past 10000 years. Geophysical Research Letters 19, (1992). 17151718.Google Scholar
Partsch, J. Die Hohe Tatra zur Eiszeit. Leipzig (1923). 1252.Google Scholar
Paterson, W.S.B. The Physics of Glaciers. third ed. (1994). Elsevier, Oxford.Google Scholar
Peyron, O., Guiot, J., Cheddadi, R., Tarasov, P., Reille, M., de Beaulieu, J.-L., Bottema, S., and Andrieu, V. Climatic reconstruction in Europe for 18,000 yr B.P. from pollen data. Quaternary Research 49, (1998). 183196.Google Scholar
Phillips, F.M., Zreda, M.G., Flinsch, M.R., Elmore, D., and Sharma, P. A reevaluation of cosmogenic 36Cl production rates in terrestrial rocks. Geophysical Research Letters 23, 9 (1996). 949952.Google Scholar
Porter, S.C. Equilibrium-line altitudes of late Quaternary glaciers in the Southern Alps, New Zealand. Quaternary Research 5, (1975). 2747.Google Scholar
Putkonen, J., and Swanson, T. Accuracy of cosmogenic ages for moraines. Quaternary Research 59, (2003). 255261.Google Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggarrd-Andersen, M.-L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, P., Bigler, M., Rothlisberger Fisher, K., Goto-Azuma, K., Hansson, M.E., and Ruth, U. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111, (2006). 115.Google Scholar
Reitner, J. Glacial dynamics at the beginning of Termination 1 in the Eastern Alps and their stratigraphic implications. Quaternary International 164–165, (2007). 6484.Google Scholar
Reuther, A., Urdea, P., Geiger, C., Ivy-Ochs, S., Niller, H.-P., Kubik, P.W., and Heine, K. Late Pleistocene glacial chronology of the Pietrele Valley, Retezat Mountains, Southern Carpathians constrained by 10Be exposure ages and pedological investigations. Quaternary International 164–165, (2007). 151169.Google Scholar
Rinterknecht, V., Matoshko, A., Gorokhowich, Y., Fabel, D., and Xu, S. Expression of the Younger Dryas cold event in the Carpathian Mountains, Ukraine?. Quaternary Science Reviews 39, (2012). 106114.Google Scholar
Sarikaya, M.A., Zreda, M., Çiner, A., and Zweck, C. Cold and wet Last Glacial Maximum on Mount Sandıras, SW Turkey, inferred from cosmogenic dating and glacier modeling. Quaternary Science Reviews 27, (2008). 769780.Google Scholar
Sarikaya, M.A., Zreda, M., and Ciner, A. Glaciations and paleoclimate of Mount Erciyes, central Turkey, since the Last Glacial Maximum, inferred from 36Cl cosmogenic dating and glacier modeling. Quaternary Science Reviews 28, (2009). 23262341.CrossRefGoogle Scholar
Strandberg, G., Brandefelt, J., Kjellström, E., and Smith, B. High-resolution regional simulation of the last glacial maximum climate in Europe. Tellus 63A, (2011). 107125.Google Scholar
Yang, S., Odah, H., and Shaw, J. Variations in the geomagnetic dipole moment over the last 12,000 years. Geophysical Journal International 140, (2000). 158162.Google Scholar
Zreda, M.G., and Phillips, F.M. Cosmogenic nuclide buildup in surficial materials. Noller, J.S., Sowers, J.M., and Lettis, W.R. Quaternary Geochronology: Methods and Applications. AGU Reference Shelf 4, (2000). American Geophysical Union, 6176.Google Scholar
Zreda, M.G., Phillips, F.M., Elmore, D., Kubik, P.W., and Sharma, P. Cosmogenic Chlorine-36 production rates in terrestrial rocks. Earth and Planetary Science Letters 105, (1991). 94109.CrossRefGoogle Scholar
Zweck, C., Zreda, M., Anderson, K., and Bradley, L. iCronus: a computational tool for cosmogenic nuclide dating. American Geophysical Union Conference, San Francisco, USA, T11A-0425. (2006). Google Scholar
Zweck, C., Zreda, M., Anderson, K., and Bradley, E. The theoretical basis of ACE, an age calculation engine for cosmogenic nuclides. Chemical Geology 291, (2012). 199205.Google Scholar