Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T16:56:28.642Z Has data issue: false hasContentIssue false

Temporal evolution of sediment supply in Lago Puyehue (Southern Chile) during the last 600 yr and its climatic significance

Published online by Cambridge University Press:  20 January 2017

Sébastien Bertrand*
Affiliation:
Clays and Paleoclimate Research Unit, Department of Geology, University of Liège, Allée du 6 août, B18, 4000 Liège, Belgium
Xavier Boës
Affiliation:
Clays and Paleoclimate Research Unit, Department of Geology, University of Liège, Allée du 6 août, B18, 4000 Liège, Belgium
Julie Castiaux
Affiliation:
Clays and Paleoclimate Research Unit, Department of Geology, University of Liège, Allée du 6 août, B18, 4000 Liège, Belgium
François Charlet
Affiliation:
Renard Centre of Marine Geology (RCMG), University of Ghent, 9000 Ghent, Belgium
Roberto Urrutia
Affiliation:
Centro EULA, University of Concepción, Concepción, Chile
Cristian Espinoza
Affiliation:
Centro EULA, University of Concepción, Concepción, Chile
Gilles Lepoint
Affiliation:
Marine Research Centre (MARE), Laboratory of Oceanology, University of Liège, 4000 Liège, Belgium
Bernard Charlier
Affiliation:
Endogenous Petrology and Geochemistry Research Unit, University of Liège, 4000 Liège, Belgium
Nathalie Fagel
Affiliation:
Clays and Paleoclimate Research Unit, Department of Geology, University of Liège, Allée du 6 août, B18, 4000 Liège, Belgium
*
*Corresponding author. Fax: +32 4 366 22 02. E-mail address:[email protected] (S. Bertrand).

Abstract

Short-term climate changes in Southern Chile are investigated by a multi-proxy analysis of a 53-cm-long sedimentary sequence selected among eight short cores retrieved in Lago Puyehue (Chile, 40°S). This core contains a 600-yr-long undisturbed record of paleo-precipitation changes. Two measurement methods for sediment density, organic matter and biogenic silica contents are compared and the most appropriate techniques are selected. Together with aluminium and titanium concentrations, grain size and geochemical properties of the organic matter, these proxies are used to demonstrate paleo-precipitation changes around 40°S. Increase of terrigenous particle supply between A.D. 1490 and A.D. 1700 suggests a humid period. Contemporaneously, δ13C data show increasing lake productivity, in response to the high nutrient supply. The A.D. 1700–1900 interval is characterized by a decreasing terrigenous supply and increasing δ13C values, interpreted as a drying period. The magnetic susceptibility signal, reflecting the terrigenous/biogenic ratio, demonstrates that similar variations occur in all the undisturbed sedimentary environments of Lago Puyehue. The A.D. 1490–1700 wet period is associated with the onset of the European Little Ice Age (LIA) and interpreted as its local signature. This work supports the fact that the LIA was a global event, not only restricted to the Northern Hemisphere.

Type
Research Article
Copyright
Copyright © University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bentley, M.J. (1997). Relative and radiocarbon chronology of two former glaciers in the Chilean Lake District. Journal of Quaternary Science 12, 2533. 3.0.CO;2-A>CrossRefGoogle Scholar
Bertrand, S. (2005). Sédimentation lacustre postérieure au Dernier Maximum Glaciaire dans les lacs Icalma et Puyehue (Chili méridional): Reconstitution de la variabilité climatique et des événements sismo-tectoniques.PhD dissertation,University of Liège, Belgium., 154 p.Google Scholar
Bologne, G. Duchesne, J.C. (1991). Analyse des roches silicatées par spectrométrie de fluorescence X: précision et exactitude. Professional Paper, Belgian Geological Survey 249, 11 Google Scholar
Boyle, J.F. (2001). Inorganic geochemical methods on palaeolimnology. Smol, J.P. Tracking Environmental Change Using Lake Sediments Kluwer Academic Publishers, Dordrecht. 83141. Google Scholar
Bradley, R.S. Briffa, K.R. Cole, J. Hugues, M.K. Osborn, T.J. (2003). The climate of the Last Millenium. Pedersen, T.S. Paleoclimate, Global Change and the Future Springer, Berlin. 105141. CrossRefGoogle Scholar
Brauer, A. Mingram, J. Frank, U. Günter, C. Schettler, G. Wulf, S. Zolitscka, B. Negendank, J.F. (2000). Abrupt environmental oscillations during the early Weichselian recorded at Lago Grande di Monticchio, Southern Italy. Quaternary International 73/74, 7990. CrossRefGoogle Scholar
Breitzke, M. (2000). Physical properties of marine sediments. Zabel, M. Marine Geochemistry Springer, Berlin. 2972. Google Scholar
Brindley, G.W. Brown, G. (1980). Crystal Structures of Clay Minerals and Their X-ray Identification. Monograph-Mineralogical Society (London) vol. 5, 495 Google Scholar
Campos, H. Steffen, W. Agüero, G. Parra, O. Zúñiga, L. (1989). Estudios limnologicos en el Lago Puyehue (Chile): morfometria, factores fisicos y quimicos, plancton y productividad primaria. Medio Ambiente 10, 3653. Google Scholar
Cohen, A.S. (2003). Paleolimnology: The History and Evolution of Lake Systems. Oxford Univ. Press, New York.528 pCrossRefGoogle Scholar
Committee on Abrupt Climate Change (2002). Abrupt Climate Change: Inevitable Surprises. National Academy Press, Washington, DC.244 p.Google Scholar
Cook, H.E. Johnson, P.D. Matti, J.C. Zemmels, I. (1975). Methods of sample preparation and X-ray diffraction data analysis, X-ray mineralogy laboratory. Kaneps, A.G. Initial Reports of the DSDP, Washington DC 9971007. Google Scholar
Dean, W.E. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44, 242248. Google Scholar
DeMaster, D.J. (1981). The supply and accumulation of silica in the marine environment. Geochimica et Cosmochimica acta 45, 17151732. CrossRefGoogle Scholar
Eisma, D. van der Gaast, S.J. (1971). Determination of opal in marine sediments by X-ray diffraction. Netherlands Journal of Sea Research 5, 215225. CrossRefGoogle Scholar
Folk, R.L. Ward, W.C. (1957). Brazos river bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology 27, 326. CrossRefGoogle Scholar
Gerlach, D.C. Frey, F.A. Moreno-Roa, H. Lopez-Escobar, L. (1988). Recent volcanism in the Puyehue-Cordon Caulle Region, Southern Andes, Chile (40.5°S): petrogenesis of evolved lavas. Journal of Petrology 29, 333382. CrossRefGoogle Scholar
Goodman, A.Y. Rodbell, D.T. Seltzer, G.O. Mark, B.G. (2001). Subdivision of glacial deposits in Southeastern Peru based on pedogenic development and radiometric ages. Quaternary Research 56, 3150. CrossRefGoogle Scholar
Heiri, O. Lotter, A.F. Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproductibility and comparability of results. Journal of Paleolimnology 25, 101110. CrossRefGoogle Scholar
Heusser, C.J. (2003). Ice Age Southern Andes–A Chronicle of Palaeoecological Events. Elsevier, Amsterdam.(230 p.)Google Scholar
Jenny, B. Valero-Garcés, B.L. Urrutia, R. Kelts, K. Veit, H. Appleby, P.G. Geyh, M. (2002). Moisture changes and fluctuations of the westerlies in Mediterranean Central Chile during the last 2000 years: the Laguna Aculeo record (33°50S). Quaternary International 87, 318. CrossRefGoogle Scholar
Koch, J. Kilian, R. (2005). ‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile. The Holocene 15, 1 2028. CrossRefGoogle Scholar
Lamy, F. Hebblen, D. Röhl, U. Wefer, G. (2001). Holocene rainfall variability in Southern Chile: a marine record of latitudinal shifts of the Southern Westerlies. Earth and Planetary Science Letters 185, 369382. CrossRefGoogle Scholar
Lara, A. Villalba, R. (1993). A 3620-year temperature record from cupressoides Fitzroya tree rings in Southern South America. Science 260, 11041106. CrossRefGoogle ScholarPubMed
Laugenie, C..(1982). La région des lacs, Chili méridional.PhD dissertation,Université de Bordeaux, III, . 822 pp.Google Scholar
Leinen, M. (1977). A normative calculation technique for determining opal in deep-sea sediments. Geochemica et Cosmochimica Acta 41, 671676. CrossRefGoogle Scholar
Luckman, B.H. Villalba, R. (2001). Assessing the synchroneity of glacier fluctuations in the western cordillera of the Americas during the last millennium. Markgraf, V. Interhemispheric Climate Linkages, San Diego 119140. CrossRefGoogle Scholar
Markgraf, V. (2001). Interhemispheric Climate Linkages. Academic Press, San Diego.(454 pp.)Google Scholar
Mauquoy, D. Blaauw, M. van Geel, B. Borromei, A. Quattrocchio, M. Chambers, F.M. Possnert, G. (2004). Late Holocene climatic changes in Tierra del Fuego based on multiproxy analyses of peat deposits. Quaternary Research 61, 148158. CrossRefGoogle Scholar
Meyers, P.A. (2003). Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34, 261289. CrossRefGoogle Scholar
Meyers, P.A. Teranes, J.L. (2001). Sediment organic matter. Last, M. Smol, J. Tracking Environmental Change Using Lake Sediments Kluwer Academic Publishers, Dordrecht. 239269. Google Scholar
Miller, A. (1976). The climate of Chile. Schwerdtfeger, W. World Survey of Climatology Elsevier, Amsterdam. 107134. Google Scholar
Mortlock, R.A. Froelich, P.N. (1989). A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-sea Research 36, 14151426. CrossRefGoogle Scholar
Muñoz, M. (1980). Flora del parque nacional Puyehue, Universitaria, Santiago.(557 pp.)Google Scholar
Parada, M.G. (1973). Pluviometria de Chile. Isoyetas de Valdivia-Puerto Montt.CORFO, Departamento de Recursos Hydraúlicos.Santiago, Chile, 73 pp.Google Scholar
Peinerud, E.K. (2000). Interpretation of Si concentrations in lake sediments: three case studies. Environmental Geology 40, 6472. CrossRefGoogle Scholar
Robinson, C. (1994). Lago Grande di Monticchio, southern Italy: a long record of environmental change illustrated by sediment geochemistry. Chemical Geology 118, 235254. CrossRefGoogle Scholar
Santisteban, J.I. Mediavilla, R. López-Pamo, E. Dabrio, C.J. Zapata, B.L. Garcia, J.G. Castaño, S. Martiínez-Alfaro, P.E. (2004). Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments?. Journal of Paleolimnology 32, 3 287299. CrossRefGoogle Scholar
Soon, W. Baliunas, S. (2003). Proxy climatic and environmental changes of the past 1000 years. Climate Research 23, 89110. CrossRefGoogle Scholar
Thompson, L.G. Mosley-Thompson, E. Bolzan, J.F. Koci, B.R. (1985). A 1500-year record of tropical precipitation in ice cores from the Quelccaya ice cap, Peru. Science 229, 971973. CrossRefGoogle ScholarPubMed
Thompson, L.G. Mosley-Thompson, E. Dansgaard, W. Grootes, P.M. (1986). The Little Ice Age as recorded in the stratigraphy of the tropical Quelccaya ice cap. Science 234, 361364. CrossRefGoogle ScholarPubMed
Valero-Garcés, B.L. Delgado-Huertas, A. Navas, A. Edwards, L. Schwalb, A. Ratto, N. (2003). Patterns of regional hydrological variability in central-southern Altiplano (18°S–26°S) lakes during the last 500 years. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 319338. CrossRefGoogle Scholar
Villalba, R. (1990). Climatic fluctuations in Northern Patagonia during the last 1000 years as inferred from tree-ring records. Quaternary Research 34, 346360. CrossRefGoogle Scholar
Villalba, R. (1994). Tree-ring and glacial evidence for the medieval warm epoch and the little ice age in Southern South America. Climatic Change 26, 183197. CrossRefGoogle Scholar
Villalba, R. D'Arrigo, R.D. Cook, E.R. Jacoby, G.C. Wiles, G. (2001). Decadal-scale climatic variability along the extratropical western coast of the Americas: evidence from tree-ring records. Markgraf, V. Interhemispheric Climate Linkages Academic Press, San Diego. 155172. CrossRefGoogle Scholar
Zimmerman, A.R. Canuel, A. (2002). Sediment geochemical records of eutrophication in the mesohaline Chesapeake Bay. Limnology and Oceanography 47, 4 10841093. CrossRefGoogle Scholar