Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T09:53:57.416Z Has data issue: false hasContentIssue false

Successive Oceanic and Solar Forcing Indicated by Younger Dryas and Early Holocene Climatic Oscillations in the Jura

Published online by Cambridge University Press:  20 January 2017

Michel Magny*
Affiliation:
Laboratoire de Chrono-Ecologie, UMR 9946 du CNRS, UFR Sciences et Techniques, 16 route de Gray, 25030 Besançon, France

Abstract

The recent extension of (1) the residual Δ14C curve back to 11,400 cal yr B.P. and (2) the lake-level reconstruction in the Jura back to ca. 13,500 cal yr B.P. offers the opportunity of testing by proxy data the relationships between climate, atmospheric 14C, the sun, and the ocean recently suggested from the atmospheric 14C record. The climatic significance of the Jura record is supported by correlations with climatic oscillations reconstructed in the Alps from glaciers and timberline movements. Correspondence between the 14C and paleoclimatic record from the Jura suggests a working hypothesis: two intervals within the Holocene can be distinguished in the middle latitudes of western and central Europe. An early Holocene period shows abrupt climatic oscillations linked to ocean forcing. Major colder climate phases developed between ca. 9000 and 8800, and between ca. 8000 and 7000 cal yr B.C. that coincide with higher Δ14C values. After 6000 cal yr B.C., a second period is characterized by smoother multicentury climatic oscillations linked to solar forcing.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R. B. Meese, D. A. Shuman, C. A. Gow, A. J. Tkylor, K. C. Grootes, P. M. White, J. W. C. Ram, M. Waddington, E. D. Mayewski, P. A., and Mielinski, A. G. (1993). Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, 527529.Google Scholar
Behre, K. E. (1978). Die Klimaschwankungen in europaischen Praboreal. Petermanns Ueographische Mitteilungen 2, 97102,Google Scholar
Berger, A. (1979). Insolation signatures of quaternary climatic changes. II Nuovo Cimento 2-C, 6387.Google Scholar
Bogaard, P. V. D., and Schmincke, H. U. (1985). Laacher See Tephra, a widespread isochronous late Quaternary tephra layer in central and northern Europe. Geological Society of America Bulletin 96, 15541571,Google Scholar
Bortenschlager, S. (1977). Ursachen und Ausmass postglazialer Waldgrenzschwankungen in den Ostalpen. In “Dendrochronologie und postglaziale Klimaschwankungen in Europa” (Frenzel, B, Ed.), pp. 260266. Steiner Verlag, Wiesbaden.Google Scholar
Burga, C. (1987). “Gletscherund Vegetationsgeschichte der Sudratischen Alpen seit der Spateiszeit.” Birkhauser, Basel.Google Scholar
Burga, C. (1988). Swiss vegetation history during the last 18,000 years. New Phytologist 110, 581602.CrossRefGoogle Scholar
Damon, P. E., and Sonett, C. P. (1991). Solar and terrestrial components of the atmospheric 14C variation spectrum. In “The Sun in Time” (Sonett, C. P. Giampapa, M. S., and Matthiews, M. S., Eds.), pp. 360388. TUcson.Google Scholar
Denton, G. H., and Karlen, W. (1973). Holocene climatic variations: Their pattern and possible cause. Quaternary Research 3, 155205.Google Scholar
Digerfeldt, G. (1988). Reconstruction and regional correlation of Holocene lake-level fluctuations in lake Bysjon, South Sweden. Boreas 17, 165182.CrossRefGoogle Scholar
Duplessy, J. C. Labeyrie, L. Arnold, M. Pateme, M. Duprat, J., and van Weering, T. C. E. (1992). Changes in surface salinity of the North Atlantic Ocean during the last deglaciation. Nature 358, 485488.Google Scholar
Eddy, J. A. (1977). Climate and the changing sun. Climatic Change 1, 171190.Google Scholar
Gaillard, M.-J. (1985). Postglacial palaeoclimatic changes in Scandinavia and Central Europe: A tentative correlation based on studies of lake-level fluctuations. Ecologia Mediterranea 11, 159175.CrossRefGoogle Scholar
Houghton, J. T. Callander, B. A., and Varney, S. K. (1992). “Climate Change 1992, The Supplementary Report to the IPCC Scientific Assessment.” Cambridge Univ. Press, Cambridge, UK, 1992.Google Scholar
Huntley, B. (1993). Rapid early-Holocene migration and high abundance of hazel (Corylus avellana L.): Alternative hypotheses. In“Climate change and human impact on the landscape” (Chambers, E M., Ed.), pp. 205216. Chapman & Hall, London.Google Scholar
Karpuz, N. K., and E. Jansen, E. (1992). A high-resolution diatom record of the last deglaciation from the SE Norwegian Sea: Documentation of rapid climatic changes. Paieoceanography 7, 499520.CrossRefGoogle Scholar
Lotter, A. F. (1991a). How long was the Younger Dryas? Preliminary evidence from annually laminated sediments of Soppensee (Switzerland). Hydrobiotogia 214, 5357.Google Scholar
Lotter, A. F. (1991b). Absolute dating of the Late-Glacial period in Switzerland using annually laminated sediments. Quaternary Research 35, 321330.Google Scholar
Lotter, A. F. Reicher, Siegenthaler, U., and Birks, H. J. B. (1992). Late-glacial climatic oscillations as recorded in Swiss lake sediments. Journal of Quaternary Science 7, 187204.Google Scholar
Magny, M. (1992a). Holocene lake-level fluctuations in Jura and the northern subalpine ranges, France: Regional pattern and climatic implications, Boreas, 21, 319334.CrossRefGoogle Scholar
Magny, M. (1992b). Les fluctuations des lacs jurassiens et subalpins. In“Le climat k la fin de 1’Age du Fer et dans 1’Antiquity” (Richard, H. and Magny, M., Eds.), pp. 3236. Les Nouvelles de l’Archologie Vol. 50, Paris.Google Scholar
Magny, M. (1993a). Solar influences on Holocene climatic changes illustrated by correlations between past lake-level fluctuations and the atmospheric 14C record. Quaternary Research 40, 19.Google Scholar
Magny, M. (1993b). Un cadre climatique pour les habitats lacustres pr6historiques? Comptes Rendus d I’Academie des Sciences Paris 316, 16191625.Google Scholar
Magny, M. (1993c). Correlation of lake-level fluctuations with atmospheric l4C variations: A climate-sun relation. Comptes Rendus a VAcademie des Sciences Paris 317, 13491356.Google Scholar
Magny, M. (1993d). Holocene fluctuations of lake levels in the French Jura and Subalpine ranges, and their implications for past general circulation pattern. The Holocene 3, 306313.Google Scholar
Magny, M., and Ruffaldi, P. (1994). A palaeohydrological record of Younger Dryas from Lake Onoz in Jura. France. Comptes Rendus a I’Academie des Sciences Paris 319, 459466.Google Scholar
Morner, N.~A. (1993). Global change: The high amplitude changes 13-10 ka ago—novel aspects. Global and Planetary Change 7, 243250.CrossRefGoogle Scholar
Patzelt, G. (1973). Die postglazialen Gletscherund Klimaschwankungen in der Venedigergruppe (Hohe Tauem, Ostalpen). Zeitschrift fur Geomorphologie, NF, Supp. Bd. 16, 2572.Google Scholar
Patzelt, G. (1977). Der zeitliche Ablauf und das Ausmass postglazialer Klimaschwankungen in den Alpen. In “Dendrochronologie und postglaziale Klimaschwankungen in Europa” (Frenzel, B., Ed), pp. 248259. Wiesbaden.Google Scholar
Patzelt, G. (1980). Neue Ergebnisse der Spatund Postglazialforschung in Tirol. Jahresbericht der Osterreichisches Geographie Gesellschaft Innsbruck 16-11, 1118.Google Scholar
Richard, H. (1983). “Nouvelles contributions & Fhistoire de la v£g£tation franc-comtoise tardiglaciaire et holocene a partir des donn6es de la palynologie.” Thesis, University of Franche-ComU, Besanon.Google Scholar
Rozanski, K. Goslar, T. Dulinski, M. Kuc, T. Pazdur, M. F., and Walanus, A. (1992). The late glacial-Holocene transition in central Europe derived from isotope studies of laminated sediments from Lake Gusciaz (Puland). In “Global environment change,” Vol. 2 “The last deglaciation: absolute and radiocarbon chronologies” (Bard, E. and Broeker, W. S., Eds), NATO ASI Series 1, pp. 6980. Springer Verlag, Heidelberg.Google Scholar
Ruffaldi, P. (1993). “Histoire de la v£g£tation du Jura meridional depuis le retrait du glacier wiirmien a partir des analyses palynologiques du lac de Cerin (Ain, France). Thesis, 254 pp. University of Franche Comt6, Besanon.Google Scholar
Sonett, C. P., and Suess, H. E, (1984). Correlation of bristelcone pine ring widths with atmospheric l4C variations: a climate-Sun relation. Nature 307, 141143.Google Scholar
Starkel, L. (1991). Long-distance Correlation of Fluvial Events in the Temperate Zone, In “Temperate Palaeohydrology” (Starkel, L. Gregory, K. J., and Thornes, J. B., Eds.), pp. 473495. Wiley, New York.Google Scholar
Street-Perrott, F. A., and Harrison, S. P. (1985). Lake levels and climate reconstruction. In “Paleoclimate Analysis and Modeling” (Hecht, A. D., Ed.), pp. 291340. Wiley, New York.Google Scholar
Stuiver, M., and Braziunas, T. F. (1993). Sun, ocean, climate and atmospheric 14C02: An evaluation of causal and spectral relationships. The Holocene 3, 289305.CrossRefGoogle Scholar
Stuiver, M. Braziunas, T. F. Becker, B., and Kromer, B. (1991). Climatic, solar, oceanic and geomagnetic influences on late-Glacial and Holocene atmospheric UC/12C change. Quaternary Research 35, 124.Google Scholar
Stuiver, M. Long, A., and R. Kra, R. (1993). Calibration 1993. Radiocarbon, 35.Google Scholar
Stuiver, M., and Reimer, P. (1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.Google Scholar
Wigley, T. M. L., and Kelly, P. M. (1990). Holocene climatic change, UC wiggles and variations in solar irradiance. Philosophical Transactions of the Royal Society of London A 330, 547560.Google Scholar
Zbinden, H. Andree, M. Oeschger, A. Ammann, B. Lotter, A. Bonani, G., and Wofli, W. (1989). Atmospheric radiocarbon at the end of the last glacial: An estimate based on AMS radiocarbon dates on terrestrial macrofossils from lake sediments. Radiocarbon 31, 795804.Google Scholar
Zoller, H. (1977). Alter und Ausmass postglazialer Klimaschwankungen in den Schweizer Alpen. In “Dendrochronologie und Klimaschwankungen in Europa” (Frenzel, B., Ed.), pp. 271281. Steiner Verlag, Wiesbaden.Google Scholar