Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T00:59:32.883Z Has data issue: false hasContentIssue false

Stable isotopes confirm the Banwell Bone Cave Mammal Assemblage Zone represents an MIS 5 fauna

Published online by Cambridge University Press:  20 January 2021

Rhiannon E. Stevens*
Affiliation:
Institute of Archaeology, University College London, 31-34 Gordon Square, London, WC1H 0PY, United Kingdom
Hazel Reade
Affiliation:
Institute of Archaeology, University College London, 31-34 Gordon Square, London, WC1H 0PY, United Kingdom
*
*Corresponding author at: Institute of Archaeology, University College London, 31-34 Gordon Square, London, WC1H 0PY, United Kingdom. E-mail address: [email protected] (R.E. Stevens).

Abstract

The position of the Banwell Bone Cave mammal assemblage zone (MAZ) in the mammalian biostratigraphy of the British Isles has been the focus of debate for decades. Dominated by fauna typical of cold environments it was originally linked to the marine oxygen isotope stage (MIS) 4 stadial (ca. 72–59 ka). Subsequently it was argued that the Banwell Bone Cave MAZ more likely relates to the temperate interstadial of MIS 5a (ca. 86–72 ka). It is envisioned that “cold fauna” such as bison and reindeer moved into Britain during stadial MIS 5b (ca. 90 ka) and were subsequently isolated by the rising sea level during MIS 5a. Here we investigate environmental conditions during the Banwell Bone Cave MAZ using bone collagen δ13C and δ15N and tooth enamel δ18O and δ13C isotope analysis. We analyse bison and reindeer from the MAZ type-site, Banwell Bone Cave. Our results show unusually high δ15N values, which we ascribe to arid conditions within a temperate environment. Palaeotemperature estimates derived from enamel δ18O indicate warm temperatures, similar to present day. These results confirm that the Banwell Bone Cave MAZ relates to a temperate interstadial and supports its correlation to MIS 5a rather than MIS 4.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguilar, A., Giménez, J., Gómez–Campos, E., Cardona, L., Borrell, A., 2014. δ15N value does not reflect fasting in mysticetes. PLoS One 9, e92288.CrossRefGoogle Scholar
Ambrose, S.H., Norr, L., 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert, J., Grupe, G. (Eds.), Prehistoric Human Bone: Archaeology at the Molecular Level. Springer, New York, pp. 137.Google Scholar
Amundson, R., Austin, A.T., Schuur, E.A.G., Yoo, K., Matzek, V., Kendall, C., Uebersax, A., Brenner, D. Baisden, W.T., 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles 17, 1031.CrossRefGoogle Scholar
Ashton, N.M., Lewis, S.G., Stringer, C.B. (Eds.), 2011. The Ancient Human Occupation of Britain. Elsevier, Amsterdam.Google Scholar
Austin, A.T., Vitousek, P.M., 1998. Nutrient dynamics on a precipitation gradient in Hawai'i. Oecologia 113, 519529.CrossRefGoogle ScholarPubMed
Balasse, M., Ambrose, S.H., Smith, A.B., Price, T.D., 2002. The seasonal mobility model for prehistoric herders in the South-Western Cape of South Africa assessed by isotopic analysis of sheep tooth enamel. Journal of Archaeological Science 29, 917932.CrossRefGoogle Scholar
Bocherens, H., Drucker, D., 2003. Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: Case studies from recent and ancient terrestrial ecosystems. International Journal of Osteoarchaeology 13, 4653.CrossRefGoogle Scholar
Bocherens, H., Drucker, D.G., Germonpré, M., Lázničková-Galetová, M., Naito, Y.I., Wissing, C., Brůžek, J., Oliva, M., 2015. Reconstruction of the Gravettian food-web at Předmostí I using multi-isotopic tracking (13C, 15N, 34S) of bone collagen. Quaternary International 359, 211228.CrossRefGoogle Scholar
Bocherens, H., Drucker, D.G., Madelaine, S., 2014. Evidence for a 15N positive excursion in terrestrial foodwebs at the Middle to Upper Palaeolithic transition in south-western France: implications for early modern humans. Journal of Human Evolution 69, 3143.CrossRefGoogle Scholar
Bowes, R.E., Lafferty, M.H., Thorp, J.H., 2014. Less means more: Nutrient stress leads to higher δ15N ratios in fish. Freshwater Biology 59, 19261931.CrossRefGoogle Scholar
Britton, K., Pederzani, S., Kindler, L., Roebroeks, W., Gaudzinski-Windheuser, S., Richards, M.P., Tütken, T., 2019. Oxygen isotope analysis of Equus teeth evidences early Eemian and early Weichselian palaeotemperatures at the Middle Palaeolithic site of Neumark-Nord 2, Saxony-Anhalt, Germany. Quaternary Science Reviews 226, 106029.CrossRefGoogle Scholar
Bryant, I.D., Holyoak, D.T., Moseley, K.A., 1983. Late Pleistocene deposits at Brimpton, Berkshire, England. Proceedings of the Geologists’ Association 94, 321343.CrossRefGoogle Scholar
Bryant, J.D., Froelich, P., 1995. A model of oxygen isotope fractionation in body water of large mammals. Geochimimica et Cosmochimica Acta 59, 45234537.CrossRefGoogle Scholar
Cerling, T.E., Harris, J.M., 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347363.CrossRefGoogle ScholarPubMed
Cherel, Y., Hobson, K. A., Baiileul, F., Groscolas, R., 2005. Nutrition, physiology, and stable isotopes: New information from fasting and molting penguins. Ecology 86, 28812888.CrossRefGoogle Scholar
Coope, G.R., Angus, R.B., 1975. An ecological study of a temperate interlude in the middle of the last glaciation, based on fossil Coleoptera from Isleworth, Middlesex. Journal of Animal Ecology 44, 365391.CrossRefGoogle Scholar
Coope, G.R., Gibbard, P.L., Hall, A.R., Preece, R.C., Robinson, J.E., Sutcliffe, A.J., 1997. Climatic and environmental reconstructions based on fossil assemblages from Middle Devensian (Weichselian) deposits of the River Thames at South Kensington, Central London, UK. Quaternary Science Reviews 16, 11631195.CrossRefGoogle Scholar
Coplen, T.B., 1995. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances — (technical report). Geothermics 24, 707712.CrossRefGoogle Scholar
Coplen, T.B., 2011. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Communications in Mass Spectrometry 25, 25382560.CrossRefGoogle ScholarPubMed
Craine, J.M., Brookshire, E.N.J., Cramer, M.D., Hasselquist, N.J., Koba, K., Marin-Spiotta, E., Wang, L., 2015. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil 396, 126.CrossRefGoogle Scholar
Craine, J.M., Elmore, A.J., Aidar, M.P.M., Bustamante, M., Dawson, T.E., Hobbie, E.A., Kahmen, A., et al. , 2009. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist 183, 980992.CrossRefGoogle ScholarPubMed
Currant, A., Jacobi, R., 1997. Vertebrate faunas of the British Late Pleistocene and the chronology of human settlement. Quaternary Newsletter 82, 18.Google Scholar
Currant, A., Jacobi, R., 2001. A formal mammalian biostratigraphy for the Late Pleistocene of Britain. Quaternary Science Reviews 20, 17071716.CrossRefGoogle Scholar
Currant, A., Jacobi, R., 2002. Human presence and absence in Britain during the early part of the Late Pleistocene. In: Tuffreau, A., Roebroeks, W. (Eds), Le Denier Interglaciaire et les occupations du Paléolithique moyen. Publications du CERP no. 8. Université des Sciences et technologies de Lille, Villeneuve-d'Ascq, pp. 105113.Google Scholar
Currant, A.P., Jacobi, R.M., 2011. The mammalian faunas of the British late Pleistocene. In: Ashton, N.M., Lewis, S.G., Stringer, C.B. (Eds.), The Ancient Human Occupation of Britain. Elsevier, Amsterdam, pp. 165180.CrossRefGoogle Scholar
DeNiro, M.J., 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806809.CrossRefGoogle Scholar
Doi, H., Akamatsu, F., González, A.L., 2017. Starvation effects on nitrogen and carbon stable isotopes of animals: An insight from meta-analysis of fasting experiments. Royal Society Open Science 4, 170633.CrossRefGoogle ScholarPubMed
Drucker, D., Bocherens, H., Bridault, A., Billiou, D., 2003. Carbon and nitrogen isotopic composition of red deer (Cervus elaphus) collagen as a tool for tracking palaeoenvironmental change during the Late-Glacial and Early Holocene in the northern Jura (France). Palaeography, Palaeoclimatology, Palaeoecology 195, 375388.CrossRefGoogle Scholar
Drucker, D., Bocherens, H., Pike-Tay, A., Mariotti, A., 2001. Isotopic tracking of seasonal dietary change in dentine collagen: preliminary data from modern caribou. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science 333, 303309.Google Scholar
Drucker, D.G., Bridault, A., Cupillard, C., Hujic, A., Bocherens, H., 2011. Evolution of habitat and environment of red deer (Cervus elaphus) during the Late-glacial and early Holocene in eastern France (French Jura and the western Alps) using multi-isotope analysis (δ13C, δ15N, δ18O, δ34S) of archaeological remains. Quaternary International 245, 268278.CrossRefGoogle Scholar
Drucker, D.G., Bridault, A., Hobson, K.A., Szuma, E., Bocherens, H., 2008. Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeography, Palaeoclimatology, Palaeoecology 266, 6982.CrossRefGoogle Scholar
Fabre, M., Lécuyer, C., Brugal, J.P., Amiot, R., Fourel, F., Martineau, F., 2011. Late Pleistocene climatic change in the French Jura (Gigny) recorded in the δ18O of phosphate from ungulate tooth enamel. Quaternary Research 75, 605613.CrossRefGoogle Scholar
Fizet, M., Mariotti, A., Bocherens, H., 1995. Effect of Diet, physiology and climate on carbon and nitrogen stable isotopes of collagen in a late Pleistocene anthropic palaeoecosystem: Marillac, Charente, France. Journal of Archaeological Science 22, 6779.CrossRefGoogle Scholar
Fleming, A.H., Kellar, N.M., Allen, C.D., Kurle, C.M., 2018. The utility of combining stable isotope and hormone analyses in marine megafauna research. Frontiers in Marine Science 5, 338.CrossRefGoogle Scholar
Fricke, H.C., D'Neil, J.R., 1996. Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: Implications for palaeoclimatological and palaeobiological research. Palaeogeography, Palaeoclimatology, Palaeoecology 126, 9199.CrossRefGoogle Scholar
Fuller, B.T., Fuller, J.L., Sage, N.E., Harris, D.A., O'Connell, T.C., Hedges, R.E., 2005. Nitrogen balance and δ15N: Why you're not what you eat during nutritional stress. Rapid Communications in Mass Spectrometry 19, 24972506.CrossRefGoogle Scholar
Gannes, L.Z., Del Rio, C.M., Koch, P., 1998. Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 119, 725737.CrossRefGoogle ScholarPubMed
Gąsiorowski, M., Hercman, H., Ridush, B., Stefaniak, K., 2014. Environment and climate of the Crimean Mountains during the Late Pleistocene inferred from stable isotope analysis of red deer (Cervus elaphus) bones from the Emine-Bair-Khosar Cave. Quaternary International 326, 243249.CrossRefGoogle Scholar
Gilmour, M., Currant, A.P., Jacobi, R.M., Stringer, C.B., 2007. Recent TIMS dating results from British Late Pleistocene vertebrate faunal localities: Context and interpretation. Journal of Quaternary Science 22, 793800.CrossRefGoogle Scholar
Gomez-Campos, E., Borrell, A., Aguilar, A., 2011. Nitrogen and carbon stable isotopes do not reflect nutritional condition in the striped dolphin. Rapid Communication in Mass Spectrometry 25, 13431347.CrossRefGoogle Scholar
Handley, L.L., Austin, A.T., Stewart, G.R., Robinson, D., Scrimgeour, C.M., Raven, J.A., Heaton, T.H.E., Schmidt, S., 1999. The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Australian Journal of Plant Physiology 26, 185199.Google Scholar
Hartman, G., 2011. Are elevated δ15N values in herbivores in hot and arid environments caused by diet or animal physiology? Functional Ecology 25, 122131.CrossRefGoogle Scholar
Heaton, T.H.E., 1999. Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: Implications for palaeodiet studies. Journal of Archaeological Science 26, 637649.CrossRefGoogle Scholar
Hedges, R.E.M., Stevens, R.E., Kock, P.L., 2005. Isotopes in bones. In: Leng, M.J. (Ed.), Isotopes in Palaeoenvironmental Research, Vol. 10. Springer, Dordrecht, pp. 117145.Google Scholar
Higham, T. G., Jacobi, R. M., Bronk Ramsey, C., 2006. AMS radiocarbon dating of ancient bone using ultrafiltration. Radiocarbon 48, 179195.CrossRefGoogle Scholar
Hobson, K. A., Alisauskas, R. T., Clark, R.G., 1993. Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: Implications for isotopic analysis of diet. Condor 95, 388394.CrossRefGoogle Scholar
Hoefs, J., 2009. Stable Isotope Geochemistry. Springer, Berlin.Google Scholar
Holleman, D. F., Luick, R., White, R.G., 1979. Lichen intake estimates for reindeer and caribou during winter. Journal of Wildlife Management 43, 192201.CrossRefGoogle Scholar
Hoppe, K.A. 2006. Correlation between the oxygen isotope ratio of North American bison teeth and local waters: Implication for paleoclimatic reconstructions. Earth Planetary Science Letters 244, 408417.CrossRefGoogle Scholar
International Atomic Energy Agency (IAEA)/World Meteorological Orgnaisation (WMO), 2020. Global Network of Isotopes in Precipitation. The GNIP Database (accessed May 1st, 2020). https://nucleus.iaea.org/wiserCrossRefGoogle Scholar
Jones, J.R., Richards, M.P., Reade, H., de Quirós, F.B., Marín-Arroyo, A.B., 2019. Multi-Isotope investigations of ungulate bones and teeth from El Castillo and Covalejos caves (Cantabria, Spain): Implications for paleoenvironment reconstructions across the Middle-Upper Palaeolithic transition. Journal of Archaeological Science: Reports 23, 10291042.CrossRefGoogle Scholar
Jones, J.R., Richards, M.P., Straus, L.G., Reade, H., Altuna, J., Mariezkurrena, K., Marín-Arroyo, A.B., 2018. Changing environments during the Middle-Upper Palaeolithic transition in the eastern Cantabrian Region (Spain): Direct evidence from stable isotope studies on ungulate bones. Scientific Reports 8, 14842.CrossRefGoogle ScholarPubMed
Julien, M.A., Bocherens, H., Burke, A., Drucker, D.G., Patou-Mathis, M., Krotova, O., Péan, S., 2012. Were European steppe bison migratory? 18O, 13C and Sr intra-tooth isotopic variations applied to a palaeoethological reconstruction. Quaternary International 271, 106119.CrossRefGoogle Scholar
Keen, D.H., 1995. Raised beaches and sea-levels in the English Channel in the Middle and Late Pleistocene: Problems of interpretation and implications for the isolation of the British Isles. In: Preece, R.C. (Ed.), Island Britain: A Quaternary Perspective. Geological Society of London Special Publication 96. The Geological Society, London, pp. 6374.Google Scholar
Kerney, M.P., Gibbard, P.L., Hall, A.R., Robinson, J.E., 1982. Middle Devensian river deposits beneath the ‘upper floodplain’ terrace of the river Thames at Isleworth, west London. Proceedings of the Geologists’ Association 93, 385393.CrossRefGoogle Scholar
Kohn, M.J., 1996. Predicting animal δ18O: Accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60, 48114829.CrossRefGoogle Scholar
Kohn, M.J., 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Science 107, 1969119695.CrossRefGoogle ScholarPubMed
Kohn, M.J., Schoeninger, M.J., Valley, J.W., 1996. Herbivore tooth oxygen isotope compositions: Effects of diet and physiology. Geochimica et Cosmochimica Acta 60, 38893896.CrossRefGoogle Scholar
Krueger, H.W., Sullivan, C.H., 1984. Models for carbon isotope fractionation between diet and bone. In: Turnland, J., Johnson, P.E. (Eds.), Stable Isotopes in Nutrition. American Chemical Society, Washington, D.C., pp. 205222.CrossRefGoogle Scholar
Kuitems, M., van Kolfschoten, T., van der Plicht, J., 2015. Elevated δ15N values in mammoths: A comparison with modern elephants. Archaeological and Anthropological Sciences 7, 289295.CrossRefGoogle Scholar
Larter, N.C., Gates, C.C., 1991. Diet and habitat selection of wood bison in relation to seasonal-changes in forage quantity and quality. Canadian Journal of Zoology 69, 26772685.CrossRefGoogle Scholar
Lee-Thorp, J.A., Sealy, J.C., van der Merwe, N.J., 1989. Stable carbon isotope ratio differences between bone collagen and bone apatite and their relationship to diet. Journal of Archaeological Science 16, 585599.CrossRefGoogle Scholar
Lohuis, T.D., Harlow, H.J., Beck, T.D.I., 2007. Hibernating black bears (Ursus americanus) experience skeletal muscle protein balance during winter anorexia. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 147, 2028.CrossRefGoogle ScholarPubMed
Longinelli, A., 1984. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta 48, 385390.CrossRefGoogle Scholar
Longinelli, A., Iacumin, P., Davanzo, S., Nikolaev, V., 2003. Modern reindeer and mice: revised phosphate–water isotope equations. Earth and Planetary Science Letters 214, 491498.CrossRefGoogle Scholar
Longin, R., 1971. New method of collagen extraction for radiocarbon dating. Nature 230, 241242.CrossRefGoogle ScholarPubMed
Luz, B., Kolodny, Y., 1985. Oxygen isotope variations in phosphate of biogenic apatites, IV. Mammal teeth and bones. Earth and Planetary Science Letters 75, 2936.CrossRefGoogle Scholar
Luz, B., Kolodny, Y., Horowitz, M., 1984. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48, 16891693.CrossRefGoogle Scholar
Maddy, D., Lewis, S.G., Scaife, R.G., Bowen, D.Q., Coope, G.R., Green, C.P., Hardaker, T., et al. , 1998. The Upper Pleistocene deposits at Cassington, near Oxford, England. Journal of Quaternary Science: Published for the Quaternary Research Association 13, 205231.3.0.CO;2-N>CrossRefGoogle Scholar
Maguas, C., Brugnoli, E. 1996. Spatial variation in carbon isotope discrimination across the thalli of several lichen species. Plant, Cell and Environment 19, 437446.CrossRefGoogle Scholar
Männel, T.T., Auerswald, K., Schnyder, H., 2007. Altitudinal gradients of grassland carbon and nitrogen isotope composition are recorded in the hair of grazers. Global Ecology and Biogeography 16, 583592.CrossRefGoogle Scholar
Martinelli, L.A., Piccolo, M.D.C., Townsend, A.R., Vitousek, P.M., Cuevas, E., McDowell, W., Robertson, G.P., Santos, O.C., Treseder, K., 1999. Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46, 4565.CrossRefGoogle Scholar
Mekota, A.M., Grupe, G., Ufer, S., Cuntz, U., 2006. Serial analysis of stable nitrogen and carbon isotopes in hair: Monitoring starvation and recovery phases of patients suffering from anorexia nervosa. Rapid Communications in Mass Spectrometry 20, 16041610CrossRefGoogle ScholarPubMed
Mellars, P.A., 2004. Reindeer specialization in the early Upper Palaeolithic: The evidence from south west France. Journal of Archaeological Science 31, 613617.CrossRefGoogle Scholar
Murphy, B.P., Bowman, D.M., 2006. Kangaroo metabolism does not cause the relationship between bone collagen δ15N and water availability. Functional Ecology 20, 10621069.CrossRefGoogle Scholar
Newsome, S.D., Clementz, M.T., Koch, P.L., 2010. Using stable isotope biogeochemistry to study marine mammal ecology. Marine Mammal Science, 26, 509572.Google Scholar
Pardo, L.H., Templer, P.H., Goodale, C.L., Duke, S., Groffman, P.M., Adams, M.B., Boeckx, P., et al. ., 2006. Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry 80, 143171.CrossRefGoogle Scholar
Park, R., Epstein, S., 1960. Carbon isotope fractionation during photosynthesis. Geochimica et Cosmochimica Acta 21, 110126.CrossRefGoogle Scholar
Pederzani, S., Britton, K., 2019. Oxygen isotopes in bioarchaeology: Principles and applications, challenges and opportunities. Earth-Science Reviews 188, 77107.CrossRefGoogle Scholar
Penkman, K.E.H., Preece, R.C., Bridgland, D.R., Keen, D.H., Meijer, T., Parfitt, S.A. et al. , 2011. A chronological framework for the British Quaternary based on Bithynia opercula. Nature 476, 446449.CrossRefGoogle ScholarPubMed
Penkman, K.E.H., Preece, R.C., Bridgland, D.R., Keen, D.H., Meijer, T., Parfitt, S.A., White, T.S., Collins, M.J., 2013. An aminostratigraphy for the British Quaternary based on Bithynia opercula. Quaternary Science Reviews 61, 111134.CrossRefGoogle ScholarPubMed
Podlesak, D.W., Torregrossa, A.M., Ehleringer, J.R., Dearing, M.D., Passey, B.H., Cerling, T.E., 2008. Turnover of oxygen and hydrogen isotopes in the body water, CO2, hair, and enamel of a small mammal. Geochimica et Cosmochimica Acta 72, 1935.CrossRefGoogle Scholar
Polischuk, S.C., Hobson, K.A., Ramsay, M.A., 2001. Use of stable-carbon and-nitrogen isotopes to assess weaning and fasting in female polar bears and their cubs. Canadian Journal of Zoology 79, 499511.CrossRefGoogle Scholar
Pryor, A.J., Stevens, R.E., O'Connell, T.C., Lister, J.R., 2014. Quantification and propagation of errors when converting vertebrate biomineral oxygen isotope data to temperature for palaeoclimate reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 412, 99107.CrossRefGoogle Scholar
Reade, H., O'Connell, T.C., Barker, G., Stevens, R.E., 2016. Pleistocene and Holocene palaeoclimates in the Gebel Akhdar (Libya) estimated using herbivore tooth enamel oxygen isotope compositions. Quaternary International 404, 150162.CrossRefGoogle Scholar
Reade, H., Tripp, J.A., Charlton, S., Grimm, S., Leesch, D., Müller, W., Sayle, K.L., et al. , 2020b. Deglacial landscapes and the Late Upper Palaeolithic of Switzerland. Quaternary Science Reviews 239, 106372.CrossRefGoogle Scholar
Reade, H., Tripp, J.A., Charlton, S., Grimm, S., Sayle, K.L., Fensome, A., Higham, T.F., Barnes, I., Stevens, R.E., 2020a. Radiocarbon chronology and environmental context of Last Glacial Maximum human occupation in Switzerland. Scientific Reports 10, 4694.CrossRefGoogle Scholar
Richards, M.P., Taylor, G., Steele, T., McPherron, S.P., Soressi, M., Jaubert, J., Orschiedt, J., Mallye, J.B., Rendu, W., Hublin, J.J., 2008. Isotopic dietary analysis of a Neanderthal and associated fauna from the site of Jonzac (Charente-Maritime), France. Journal of Human Evolution 55, 179185.CrossRefGoogle ScholarPubMed
Rozanski, K.L., Araguás-Araguás, L., Conginatini, R., 1993. Isotopic Patterns in Modern Global Precipitation. In: Swart, P.K., Lohmann, K.C., Mckenzie, J., Savin, S. (Eds.), Climate Change in Continental Isotopic Records. Geophysical Monograph Series Vol. 78, American Geophysical Union, Washington, D.C., pp. 136.Google Scholar
Schreve, D.C., 1997. Mammalian Biostratigraphy of the later Middle Pleistocene in Britain. PhD dissertation, University College London, London, England.Google Scholar
Sponheimer, M., Lee-Thorp, J.A., 2003. Using carbon isotope data of fossil bovid communities for palaeoenvironmental reconstruction: Research articles: Human origins research in South Africa. South African Journal of Science 99, 273275.Google Scholar
Stevens, R.E., Hedges, R.E., 2004. Carbon and nitrogen stable isotope analysis of northwest European horse bone and tooth collagen, 40,000 BP–present: Palaeoclimatic interpretations. Quaternary Science Reviews 23, 977991.CrossRefGoogle Scholar
Stevens, R.E., Hermoso-Buxán, X.L., Marín-Arroyo, A.B., González-Morales, M.R., Straus, L.G., 2014. Investigation of Late Pleistocene and Early Holocene palaeoenvironmental change at El Mirón cave (Cantabria, Spain): Insights from carbon and nitrogen isotope analyses of red deer. Palaeogeography, Palaeoclimatology, Palaeoecology 414, 4660.CrossRefGoogle Scholar
Stevens, R.E., Jacobi, R., Street, M., Germonpré, M., Conard, N.J., Münzel, S.C., Hedges, R.E., 2008. Nitrogen isotope analyses of reindeer (Rangifer tarandus), 45,000 BP to 9,000 BP: Palaeoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 262, 3245.CrossRefGoogle Scholar
Stevens, R.E., O'Connell, T.C., Hedges, R.E., Street, M., 2009. Radiocarbon and stable isotope investigations at the Central Rhineland sites of Gönnersdorf and Andernach-Martinsberg, Germany. Journal of Human Evolution 57, 131148.CrossRefGoogle Scholar
Szpak, P., 2014. Complexities of nitrogen isotope biogeochemistry in plant-soil systems: Implications for the study of ancient agricultural and animal management practices. Frontiers in Plant Science 5, 119.CrossRefGoogle Scholar
Szpak, P., Gröcke, D.R., Debruyne, R., MacPhee, R.D., Guthrie, R.D., Froese, D., Zazula, G.D., Patterson, W.P., Poinar, H.N., 2010. Regional differences in bone collagen δ13C and δ15N of Pleistocene mammoths: implications for paleoecology of the mammoth steppe. Palaeogeography, Palaeoclimatology, Palaeoecology 286, 8896.CrossRefGoogle Scholar
Tieszen, L.L., Fagre, T., 1993. Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite and soft tissues. In: Lambert, J., Grupe, G. (Eds.), Prehistoric Human Bone: Archaeology at the Molecular Level. Springer-Verlag, New York, pp. 121155.CrossRefGoogle Scholar
Wißing, C., Rougier, H., Crevecoeur, I., Germonpré, M., Naito, Y.I., Semal, P., Bocherens, H., 2016. Isotopic evidence for dietary ecology of late Neandertals in North-Western Europe. Quaternary International 411, 327345.CrossRefGoogle Scholar
Zazzo, A., Lécuyer, C., Sheppard, S.M., Grandjean, P., Mariotti, A., 2004. Diagenesis and the reconstruction of paleoenvironments: A method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel. Geochimica et Cosmochimica Acta 68, 22452258.CrossRefGoogle Scholar
Supplementary material: File

Stevens and Reade supplementary material

Stevens and Reade supplementary material

Download Stevens and Reade supplementary material(File)
File 89.3 KB