Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T08:10:42.176Z Has data issue: false hasContentIssue false

A Speleothem Record of Younger Dryas Cooling, Klamath Mountains, Oregon, USA

Published online by Cambridge University Press:  20 January 2017

David A. Vacco*
Affiliation:
Department of Geosciences, Pennsylvania State University, State College, PA 16802, USA
Peter U. Clark
Affiliation:
Department of Geosciences, Oregon State University, Corvallis, OR 97331, USA
Alan C. Mix
Affiliation:
College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
Hai Cheng
Affiliation:
Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, USA
R. Lawrence Edwards
Affiliation:
Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, USA
*
* Corresponding author. E-mail address:[email protected] (D.A. Vacco).

Abstract

A well-dated δ18O record in a stalagmite from a cave in the Klamath Mountains, Oregon, with a sampling interval of 50 yr, indicates that the climate of this region cooled essentially synchronously with Younger Dryas climate change elsewhere in the Northern Hemisphere. The δ18O record also indicates significant century-scale temperature variability during the early Holocene. The δ13C record suggests increasing biomass over the cave through the last deglaciation, with century-scale variability but with little detectable response of vegetation to Younger Dryas cooling.

Type
Short Paper
Copyright
Copyright © University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adkins, J.F. McIntyre, K. Schrag, D.P. (2002). The salinity, temperature, and d18O of the glacial deep ocean. Science 298, 17691773. Google Scholar
Alley, R.B. Marotzke, J. Nordhaus, W.D. Overpeck, J.T. Peteet, D.M. Pielke, R.A. Jr. Pierrehumbert, R.T. Rhines, P.B. Stocker, T.F. Talley, L.D. Wallace, J.M. (2003). Abrupt climate change. Science 299, 20052010. CrossRefGoogle ScholarPubMed
Baker, A. Ito, E. Smart, P.L. McEwan, R.G. (1997). Elevated and variable values of 13C in speleothems in a British cave system. Chemical Geology 136, 263270. Google Scholar
Barron, J.A. Heusser, L. Herbert, T. Lyle, M. (2003). High-resolution climatic evolution of coastal northern California during the past 16,000 years. Paleoceanography 18, 1020 CrossRefGoogle Scholar
Bartlein, P.J. Anderson, K.H. Anderson, P.M. Edwards, M.E. Mock, C.J. Thompson, R.S. Webb, R.S. Webb, T. III, Whitlock, C. (1998). Paleoclimate simulations for North America over the past 21,000 years: features of the simulated climate and comparisons with paleoenvironmental data. Quaternary Science Reviews 17, 549585. Google Scholar
Briles, C.E. (2003). Postglacial vegetation and fire history near Bolan Lake in the Northern Siskiyou Mountains of Oregon.Master's Thesis.Department of Geography, University of Oregon, .148 pp.Google Scholar
Cerling, T.E. (1984). The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters 71, 229240. CrossRefGoogle Scholar
Cerling, T.E. Quade, J. Wang, Y. Bowman, J.R. (1989). Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature 341, 138139. Google Scholar
Cheng, H. Edwards, R.L. Hoff, J. Gallup, C.D. Richards, D.A. Asmerom, Y. (2000). The half-lives of uranium-234 and thorium-230. Chemical Geology 169, 1733. Google Scholar
Clark, P.U. Pisias, N.G. Stocker, T.F. Weaver, A.J. (2002). The role of the thermohaline circulation in abrupt climate change. Nature 415, 863869. CrossRefGoogle ScholarPubMed
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus 16, 436468. CrossRefGoogle Scholar
Dorale, J.A. Edwards, R.L. Alexander, E.C. Shen, C.-C. Richards, D.A. Cheng, H. (2004). Uranium-series dating of speleothems: current techniques, limits, and applications. Sasowski, I.D. Mylroie, J. Studies of Cave Sediments Kluwer Academic/Plenum, New York. CrossRefGoogle Scholar
Edwards, R.L. Chen, J.H. Wasserburg, G.J. (1987). U-238, U-234, Th-230, Th-232 systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters 81, 175192. CrossRefGoogle Scholar
Epstein, S. Mayeda, T.K. (1953). Variations of the 18O/16O ratio in natural waters. Geochimica et Cosmochimica Acta 4, 213 CrossRefGoogle Scholar
Fantidis, J. Ehhalt, D.H. (1970). Variations of the carbon and oxygen isotopic composition in stalagmites and stalactites: evidence of non-equilibrium isotopic fractionation. Earth and Planetary Science Letters 10, 136144. Google Scholar
Fleming, K. Johnston, P. Zwartz, D. Yokoyama, Y. Lambeck, K. Chappell, J. (1998). Refining the eustatic sea-level curve since the last glacial maximum using far- and intermediate-field sites. Earth and Planetary Science Letters 163, 327342. Google Scholar
Genty, D. Blamart, D. Ouahdi, R. Gilmour, M. Baker, A. Jouzel, J. Van-Exter, S. (2003). Precise dating of Dansgaard�"Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, 833837. Google Scholar
Grootes, P.M. Stuiver, M. White, J.W.C. Johnsen, S.J. Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552554. Google Scholar
Hendy, C.H. (1971). The isotopic geochemistry of speleothems-I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta 35, 801824. CrossRefGoogle Scholar
Hughen, K.A. Southon, J.R. Lehman, S.J. Overpeck, J.T. (2000). Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290, 19511954. CrossRefGoogle ScholarPubMed
Kienast, S. McKay, J.L. (2001). Sea surface temperatures in the subarctic northeast Pacific reflect millennial-scale climate oscillations during the last 16 kyrs. Geophysical Research Letters 28, 15631566. Google Scholar
Manabe, S. Stouffer, R.J. (1988). Two stable equilibria of a coupled ocean�"atmosphere model. Journal of Climate 1, 841866. 2.0.CO;2>CrossRefGoogle Scholar
Mantua, N.J. Hare, S.R. Zhang, Y. Wallace, J.M. Francis, R.C. (1997). A pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78, 10691079. 2.0.CO;2>CrossRefGoogle Scholar
McManus, J.F. Francois, R. Gherardi, J.-M. Keigwin, L.D. Brown-Leger, S. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834837. Google Scholar
Mikolajewicz, U. Crowley, T.J. Schiller, A. Voss, R. (1997). Modelling teleconnections between the North Atlantic and North Pacific during the Younger Dryas. Nature 387, 384387. Google Scholar
Mix, A.C. Lund, D.C. Pisias, N.G. Boden, P. Bornmalm, L. Lyle, M. Pike, J. (1999). Rapid climate oscillations in the Northeast Pacific during the last deglaciation reflect northern and southern hemisphere sources. Clark, P.U. Webb, R.S. Keigwin, L.D. Mechanisms of Global Climate Change at Millennial Time Scales; Geophysical Monograph 112 American Geophysical Union 127148. CrossRefGoogle Scholar
Mortyn, P.G. Thunell, R.C. Anderson, D.M. Stott, L.D. Le, J. (1996). Sea surface temperature changes in the southern California borderlands during the last glacial-interglacial cycle. Paleoceanography 11, 415430. CrossRefGoogle Scholar
NIST (1992a). National Institute of Standards and Technology Report of Investigation, Reference Materials 8543�"8546. National Institute of Standards and Technology, United States Department of Commerce, Gaithersburg, Maryland.2 pp.Google Scholar
NIST (1992b). National Institute of Standards and Technology Report Of Investigation, Reference Materials 8535�"8537. National Institute of Standards and Technology, United States Department of Commerce, Gaithersburg, Maryland.2 pp.Google Scholar
O'Neill, J.R. Clayton, R.N. Mayeda, T.K. (1969). Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics 51, 55475558. CrossRefGoogle Scholar
Ortiz, J.D. Mix, A.C. Hostetler, S. Kashgarian, M. (1997). The California current of the last glacial maximum: reconstruction at 42oN based on multiple proxies. Paleoceanography 12, 191206. Google Scholar
Rozanski, R. Araguas-Araguas, L. Gonfiantini, R. (1993). Isotopic patterns in modern global precipitation. Swart, P. McKenzie, J.A. Lohman, K.C. Continental Indicators of Climate: American Geophysical Union Monograph vol. 78, 136. Google Scholar
Schmidt, G.A. G.R., Bigg E.R., Rohling.(1999). Global seawater oxygen-18 database. http://www.giss.nasa.gov/data/o18data/.Google Scholar
Shen, C.-C. Edwards, R.L. Cheng, H. Dorale, J.A. Thomas, R.B. Moran, S.B. Weinstein, S. Edmonds, H.N. (2002). Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology 185, 165178. Google Scholar
Stuiver, M. Grootes, P.M. (2000). GISP2 oxygen isotope ratios. Quaternary Research 53, 277284. Google Scholar
Turgeon, S.C. (2001). Petrography and discontinuities, growth rates and stable isotopes of speleothems as indicators of paleoclimates from Oregon Caves National Monument, southwestern Oregon, USA. PhD dissertation.Department of Geography, Carlerton University, . 213 pp.Google Scholar
Velinga, M. Wood, R.A. (2002). Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change 54, 251267. Google Scholar
Voelker, A.H.L. (2002). Global distribution of centennial-scale records for marine isotope stage (MIS) 3: a database. Quaternary Science Reviews 21, 11851214. Google Scholar
Wang, Y.J. Cheng, H. Edwards, R.L. An, Z.S. Wu, J.Y. Shen, C.C. Dorale, J.A. (2001). A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, 23452348. Google Scholar
Yuan, D.X. Cheng, H. Edwards, R.L. Dykoski, C. Kelly, M.J. Zhang, M.L. Qing, J.M. Lin, Y.S. Wang, Y.G. Dorale, J.A. An, Z.S. Cai, Y.J. (2004). Timing, duration, and transitions of the Last Interglacial Asian Monsoon. Science 304, 575578. Google Scholar