Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T07:14:36.009Z Has data issue: false hasContentIssue false

Species distribution modeling reveals the ecological niche of extinct megafauna from South America

Published online by Cambridge University Press:  17 May 2021

Thaísa Araújo*
Affiliation:
Laboratório de Mastozoologia, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro. Av. Pasteur, 458, sala 501, Urca, 22290-255, Rio de Janeiro, RJ, Brazil. Programa de Pós-graduação em Biodiversidade e Biologia Evolutiva (PPGBBE), Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Cidade Universitária, 21941-902, Rio de Janeiro, RJ, Brazil.
Helena Machado
Affiliation:
University of Oregon, Earth Sciences Department, 100 Cascade Hall, Eugene, OR97403-1272, USA.
Dimila Mothé
Affiliation:
Laboratório de Mastozoologia, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro. Av. Pasteur, 458, sala 501, Urca, 22290-255, Rio de Janeiro, RJ, Brazil. Programa de Pós-graduação em Biodiversidade e Biologia Evolutiva (PPGBBE), Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Cidade Universitária, 21941-902, Rio de Janeiro, RJ, Brazil.
Leonardo dos Santos Avilla
Affiliation:
Laboratório de Mastozoologia, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro. Av. Pasteur, 458, sala 501, Urca, 22290-255, Rio de Janeiro, RJ, Brazil. Programa de Pós-graduação em Biodiversidade e Biologia Evolutiva (PPGBBE), Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Cidade Universitária, 21941-902, Rio de Janeiro, RJ, Brazil.
*
*Corresponding author: Thaísa Araújo email address: [email protected]

Abstract

Climatic and environmental changes, as well as human action, have been cited as potential causes for the extinction of megafauna in South America at the end of the Pleistocene. Among megamammals lineages with Holarctic origin, only horses and proboscideans went extinct in South America during this period. This study aims to understand how the spatial extent of habitats suitable for Equus neogeus and Notiomastodon platensis changed between the last glacial maximum (LGM) and the middle Holocene in order to determine the impact that climatic and environmental changes had on these taxa. We used species distribution modeling to estimate their potential extent on the continent and found that both species occupied arid and semiarid open lands during the LGM, mainly in the Pampean region of Argentina, southern and northeastern Brazil, and parts of the Andes. However, when climate conditions changed from dry and cold during the LGM to humid and warm during the middle Holocene, the areas suitable for these taxa were reduced dramatically. These results support the hypothesis that climatic changes were a driving cause of extinction of these megamammals in South America, although we cannot rule out the impact of human actions or other potential causes for their extinction.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abràmoff, M.D., Magelhães, P.J., Ram, S.J., 2004. Image processing with ImageJ. Biophotonics International 11, 3642.Google Scholar
Amaro, G.C., Morais, E.G.F., 2014. Distribuição geográfica potencial do ácaro-vermelho-das-palmeiras na América do Sul. Boletim de Pesquisa e Desenvolvimento da Embrapa Roraima 37, 35.Google Scholar
Ameghino, F., 1888. Rápidas diagnosis de algunos mamíferos fósiles nuevos de la República Argentina. In: Torcelli, A. (Ed.) Obras completas y correspondencia cientifica de Florentino Ameghino v. 5, 471480.Google Scholar
Anderson, R.P., Lew, D., Townsend Peterson, A., 2003. Evaluating predictive models of species' distributions: criteria for selecting optimal models. Ecological Modelling 162, 211232. https://doi.org/10.1016/S0304-3800(02)00349-6.CrossRefGoogle Scholar
Avilla, L.S., Mothé, D., 2013. The systematics of South American Quaternary mammals with Holarctic origins? An introduction to the I FOGEMI Proceedings Volume. Journal of Mammalian Evolution 20, 12. https://doi.org/10.1007/s10914-013-9224-7.CrossRefGoogle Scholar
Barrón-Ortiz, C.I., Avilla, L.S., Jass, C.N., Bravo-Cuevas, V.M., Machado, H., Mothé, D., 2019. What is Equus? Reconciling taxonomy and phylogenetic analyses. In: Bernor, R., Semprebon, G., Rivals, F., Avilla, L.S., Scott, E. (Eds.), Examining evolutionary trends in Equus and its close relatives from five continents. Frontiers in Ecology and Evolution 7, 343. https://doi.org/10.3389/fevo.2019.00343.CrossRefGoogle Scholar
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Townsend Peterson, A., Soberón, J., Villalobos, F., 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222, 18101819. https://doi.org/10.1016/j.ecolmodel.2011.02.011.CrossRefGoogle Scholar
Basher, Z., Bowden, D.A., Costello, M.J., 2014. Diversity and distribution of deep-sea shrimps in the Ross Sea region of Antarctica. PLoS ONE 9, e103195. https://doi.org/10.1371/jounal.pone.0103195.CrossRefGoogle ScholarPubMed
Behling, H., 1995. Investigation into the Late Pleistocene and Holocene history of vegetation and climate in Santa Catarina (S Brazil). Vegetation History and Archaeobotany 4, 127152. https://doi.org/10.1007/BF00203932.CrossRefGoogle Scholar
Behling, H., 2002. South and southeast Brazilian grasslands during late Quaternary times: a synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 177, 1927. https://doi.org/10.1016/S0031-0182(01)00349-2.CrossRefGoogle Scholar
Campbell, K.E., Frailey, C.D., Romero Pittman, L., 2000. The late Miocene gomphothere Amahuacatherium peruvium (Proboscidea: Gomphotheriidae) from Amazonian Peru: implications for the great American faunal interchange. Instituto Geológico Minero y Metalúrgico, Serie D: Estudios Regionales, Boletín de Estudios Regionales 23, 152 p.Google Scholar
Cione, A.L., Tonni, E.P., Soilbenzon, L.H., 2003. The Broken Zig-Zag: Late Cenozoic large mammal and tortoise extinction in South America. Revista del Museo Argentino de Ciencias Naturales 5, 2129. https://doi.org/10.22179/REVMACN.5.26.CrossRefGoogle Scholar
Codrea, V., Diaconu, F., 2007. Mammut borsoni (Hays 1834) from the Early Pliocene of Husnicioara (Mehedinţi district, Romania). Studia UBB Geologia 52, 7377. https://doi.org/10.5038/1937-8602.52.2.9.CrossRefGoogle Scholar
Coelho, G.L.N., Carvalho, L.M.T. de, Gomide, L.R., 2016. Modelagem preditiva de distribuição de espécies pioneiras no Estado de Minas Gerais. Pesquisa Agropecuária Brasileira 51, 207214. https://doi.org/10.1590/S0100-204X2016000300002.CrossRefGoogle Scholar
Cook, K.H., Vizy, E.K., 2006. South American climate during the Last Glacial Maximum: Delayed onset of the South American monsoon. Journal of Geophysical Research:Atmospheres 111. https://doi.org/10.1029/2005JD005980CrossRefGoogle Scholar
de Oliveira, K., Araújo, T., Rotti, A., Mothé, D., Rivals, F., Avilla, L.S., 2020. In defense of fantastic beasts and what they ate: A case reinforcing the importance of taxonomy for paleoecology. Quaternary Science Reviews 250, 106660. https://doi.org/10.1016/j.quascirev.2020.106660.CrossRefGoogle Scholar
de Oliveira, P.E., Barreto, A.M.F., Suguio, K., 1999. Late Pleistocene/Holocene climatic and vegetational history of the Brazilian Caatinga: the fossil dunes of the middle São Francisco River. Palaeogeography Palaeoclimatology Palaeoecology 152, 319337. https://doi.org/10.1016/S0031-0182(99)00061-9.CrossRefGoogle Scholar
Fariña, R., Czerwonogora, A., Di Giacomo, M., 2014. Splendid oddness: revisiting the curious trophic relationships of South American Pleistocene mammals and their abundance. Anais da Academia Brasileira de Ciências 86, 311331. https://doi.org/10.1590/0001-3765201420120010.CrossRefGoogle ScholarPubMed
Franklin, J., 2009. Mapping Species Distributions, Spatial Inference and Prediction. Cambridge University Press, Cambridge, UK. 320 pp.Google Scholar
Giannini, T.C., Siqueira, M.F., Acosta, A.L., Barreto, F.C.C., Saraiva, A.M., Alves-dos-Santos, I., 2012. Desafios atuais da modelagem preditiva de distribuição de espécies. Rodriguésia 63, 733749. https://doi.org/10.1590/S2175-78602012000300017.CrossRefGoogle Scholar
González-Guarda, E., Petermann-Pichincura, A., Tornero, C., Domingo, L., Agustí, J., Pino, M., Abarzúa, A.M., et al. , 2018. Multiproxy evidence for leaf-browsing and closed habitats in extinct proboscideans (Mammalia, Proboscidea) from Central Chile. Proceedings of the National Academy of Sciences 115, 92589263. https://doi.org/10.1073/pnas.1804642115.CrossRefGoogle ScholarPubMed
Guisan, A., Edwards, T.C., Hastie, T., 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling 157, 89100.CrossRefGoogle Scholar
Guisan, A., Thuiller, W., 2005. Predicting species distribution: offering more than simple habitat models. Ecological Letters 8, 9931009.CrossRefGoogle ScholarPubMed
Hanski, I., 2005. The Shrinking World: Ecological Consequences of Habitat Loss. Excellence in Ecology Volume 14. International Ecology Institute, Oldendorf/Luhe, Germany. 307 pp.Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 19651978. https://doi.org/10.1002/joc.1276.CrossRefGoogle Scholar
Iriondo, M.H., Garcia, N.O., 1993. Climatic variations in the Argentine plains during the last 18,000 years. Palaeogeography Palaeoclimatology Palaeoecology 101, 209220. https://doi.org/10.1016/0031-0182(93)90013-9.CrossRefGoogle Scholar
Koch, P.L., Barnosky, A.D., 2006. Late Quaternary extinctions: state of the debate. Annual Review of Ecology, Evolution, and Systematics 37, 215250.https://doi.org/10.1146/annurev.ecolsys.34.011802.132415.CrossRefGoogle Scholar
Larramendi, A., 2015. Proboscideans: shoulder height, body mass and shape. Acta Palaeontologica Polonica 61, 537574. https://doi.org/10.4202/app.00136.2014.Google Scholar
Lima-Ribeiro, M.S., Diniz-Filho, J.A.F., 2012. Modelando a distribuição geográfica das espécies no passado: uma abordagem promissora em paleoecologia. Revista Brasileira de Paleontologia 15, 371385. https://doi.org/10.4072/rbp.2012.3.12.CrossRefGoogle Scholar
Lima-Ribeiro, M.S., Diniz-Filho, J.A.F., 2013. Modelos Ecológicos e a Extinção da Megafauna: Clima e Homem na América do Sul. Editora Cubo, São Carlos, São Paulo, Brazil. 155 pp.Google Scholar
Lino, A., Fonseca, C., Rojas, D., Fischer, E., Pereira, M.J.R., 2019. A meta-analysis of the effects of habitat loss and fragmentation on genetic diversity in mammals. Mammalian Biology 94, 6976. https://doi.org/10.1016/j.mambio.2018.09.006.CrossRefGoogle Scholar
Lund, P.W., 1840. Nouvelles recherches sur la faune fossile du Brésil. Annales de Science Naturalles Série 2 Zoologie 13, 310319.Google Scholar
MacFadden, B.J., 2005. Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata) from the late Quaternary of South and Central America. Quaternary Research 64, 113124. https://doi.org/10.1016/j.yqres.2005.05.003.CrossRefGoogle Scholar
MacFadden, B.J., 2013. Dispersal of Pleistocene Equus (Family Equidae) into South America and calibration of GABI 3 based on evidence from Tarija, Bolivia. PlosOne 8, e59277. https://doi.org/10.1371/journal.pone.0059277.CrossRefGoogle ScholarPubMed
Machado, H., Avilla, L.S., 2019. The diversity of South American Equus: Did size really matters? In: Bernor, R., Semprebon, G., Rivals, F., Avilla, L.S., Scott, E. (Eds.), Examining evolutionary trends in Equus and its close relatives from five continents. Frontiers in Ecology and Evolution 7, 235. https://doi.org/10.3389/fevo.2019.00235.CrossRefGoogle Scholar
Machado, H., Grillo, O., Scott, E., Avilla, L., 2018. Following the footsteps of the South American Equus: Are autopodia taxonomically informative? Journal of Mammalian Evolution 25, 397405. https://doi.org/10.1007/s10914-017-9389-6.CrossRefGoogle Scholar
Mann, D.H., Groves, P., Gaglioti, B.V., Shapiro, B.A., 2019. Climate-driven ecological stability as a globally shared cause of late quaternary megafaunal extinctions: The Plaids and Stripes Hypothesis. Biological Reviews of the Cambridge Philosophical Society 94, 328352. https://doi.org/10.1111/brv.12456.CrossRefGoogle Scholar
Mayle, F.E., Power, M.J., 2008. Impact of a drier early-mid Holocene climate upon Amazonian forests. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 18291838. https://doi.org/10.1098/rstb.2007.0019.CrossRefGoogle ScholarPubMed
Melo, M.L.D., Marengo, J.A., 2008. Simulações do clima do holoceno médio na américa do sul com o modelo de circulação geral da atmosfera do CPTEC. Revista Brasileira de Meteorologia 23, 191205. https://doi.org/10.1590/S0102-77862008000200007.CrossRefGoogle Scholar
Merow, C., Smith, M.J., Silander, J.A., 2013. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 10581069. https://doi.org/10.1111/j.1600-0587.2013.07872.x.CrossRefGoogle Scholar
Mothé, D., Avilla, L.S., Asevedo, L., Borges-Silva, L., Rosas, M., Labarca-Encina, R., Souberlich, R., et al. , 2017a. Sixty years after ‘The mastodonts of Brazil’: The state of the art of South American proboscideans (Proboscidea, Gomphotheriidae). Quaternary International 443, 5264. https://doi.org/10.1016/j.quaint.2016.08.028.CrossRefGoogle Scholar
Mothé, D., Avilla, L.S., Cozzuol, M., Winck, G.R., 2012. Taxonomic revision of the Quaternary gomphotheres (Mammalia: Proboscidea: Gomphotheriidae) from the South American lowlands. Quaternary International 276–277, 27. https://doi.org/10.1016/j.quaint.2011.05.018.CrossRefGoogle Scholar
Mothé, D., Ferretti, M.P., Avilla, L.S., 2017b. Running over the same old ground: Stegomastodon never roamed South America. Journal of Mammalian Evolution 26, 165177. https://doi.org/10.1007/s10914-017-9392-y.CrossRefGoogle Scholar
Nogués-Bravo, D., 2009. Predicting the past distribution of species climatic niches. Global Ecology and Biogeography 18, 521531. https://doi.org/10.1111/j.1466-8238.2009.00476.x.CrossRefGoogle Scholar
Owens, H.L., Campbell, L.P., Dornak, L.L., Saupe, E.E., Barve, N., Soberón, J., Ingenloff, K., Lira-Noriega, A., Hensz, C.M., Myers, C.E., Peterson, A.T., 2013. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling 263, 1018. https://doi.org/10.1016/j.ecolmodel.2013.04.011.CrossRefGoogle Scholar
Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.CrossRefGoogle Scholar
Prado, L.F., Wainer, I., Chiessi, C.M., Ledru, M.P., Turcq, B., 2013. A mid-Holocene climate reconstruction for eastern South America. Climate of the Past 9, 21172133. https://doi.org/10.5194/cp-9-2117-2013.CrossRefGoogle Scholar
Prieto, R., 1996. Late Quaternary vegetational and climatic changes in the Pampa grassland of Argentina. Quaternary Research 45, 7388. https://doi.org/10.1006/qres.1996.0007.CrossRefGoogle Scholar
Ramos, V., Riccardi, A., Rolleri, E., 2004. Límites naturales del norte de la Patagonia. Revista de la Asociación Geológica Argentina 59, 785786.Google Scholar
Ray, N., Adams, J.M., 2001. A GIS-based vegetation map of the world at the Last Glacial Maximum (25,000–15,000 BP). Internet Archaeology 11. https://doi.org/10.11141/ia.11.2.Google Scholar
Roig-Juñent, S., Domínguez, M.C., Flores, G.E., Mattoni, C., 2006. Biogeographic history of South American arid lands: A view from its arthropods using TASS analysis. Journal of Arid Environments 66, 404420. https://doi.org/10.1016/j.jaridenv.2006.01.005.CrossRefGoogle Scholar
Rook, L., Bernor, R.L., Avilla, L.S., Cirilli, O., Flynn, L., Jukar, A., Sanders, W., Scott, E., Wang, X., 2019. Mammal biochronology (Land Mammal Ages) around the world from Late Miocene to Middle Pleistocene and major events in horse evolutionary history. In: Bernor, R., Semprebon, G., Rivals, F., Avilla, L.S., Scott, E. (Eds.), Examining evolutionary trends in Equus and its close relatives from five continents. Frontiers in Ecology and Evolution 7, 278. https://doi.org/10.3389/fevo.2019.00278.CrossRefGoogle Scholar
Sánchez, B., Prado, J.L., Alberdi, M.T., 2004. Feeding ecology, dispersal, and extinction of South American Pleistocene gomphotheres (Gomphotheriidae, Proboscidea). Paleobiology 30, 146161. https://doi.org/10.1666/0094-8373(2004)030<0146:FEDAEO>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Sánchez, B., Prado, J.L., Alberdi, M.T., 2006. Ancient feeding ecology and extinction of Pleistocene horses from the Pampean Region, Argentina. Ameghiniana 43, 427436.Google Scholar
Sandom, C., Faurby, S., Sandel, B., Svenning, J.C., 2014. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proceedings of the Royal Society of London B: Biological Sciences 28, 20133254. https://doi.org/10.1098/rspb.2013.3254.Google Scholar
Semprebon, G.M., Rivals, F., Solounias, N., Hulbert, R.C., 2016. Paleodietary reconstruction of fossil horses from the Eocene through Pleistocene of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 442, 110127. https://doi.org/10.1016/j.palaeo.2015.11.004.CrossRefGoogle Scholar
Silva Dias, P.L., Turcq, B., Silva Dias, M.A.F., Braconnot, P., Jorgetti, T., 2009. Mid-Holocene climate of tropical South America: a model-data approach. In: Vimeux, F., Sylvestre, F., Khodri, M. (Eds.), Past Climate Variability in South America and Surrounding Regions From the Last Glacial Maximum to the Holocene. Developments in Paleoenvironmental Research 14. Springer, Dordrecht, The Netherlands, pp. 259281. https://doi.org/10.1007/978-90-481-2672-9_11.CrossRefGoogle Scholar
Soberón, J., Peterson, A.T., 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2, 110. https://doi.org/10.17161/bi.v2i0.4.CrossRefGoogle Scholar
Stevaux, J.C., 2000. Climatic events during the Late Pleistocene and Holocene in the Upper Parana River: Correlation with NE Argentina and South-Central Brazil. Quaternary International 72, 7385. https://doi.org/10.1016/S1040-6182(00)00023-9.CrossRefGoogle Scholar
Valdes, P.J., 2000. South American palaeoclimate model simulations: How reliable are the models? Journal of Quaternary Science 15, 357368. https://doi.org/10.1002/1099-1417(200005)15:4<357::AID-JQS547>3.0.CO;2-8.3.0.CO;2-8>CrossRefGoogle Scholar
Villavicencio, N.A, Corcoran, D., Marquet, P.A., 2019. Assessing the causes behind the Late Quaternary extinction of horses in South America using species distribution models. In: Bernor, R., Semprebon, G., Rivals, F., Avilla, L.S., Scott, E. (Eds.), Examining evolutionary trends in Equus and its close relatives from five continents. Frontiers in Ecology and Evolution 7, 226. https://doi.org/10.3389/fevo.2019.00226.CrossRefGoogle Scholar
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., et al. , 2011. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development 4, 845872. https://doi.org/10.5194/gmd-4-845-2011.CrossRefGoogle Scholar
Woodburne, M.O., 2010. The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. Journal of Mammalian Evolution 17, 245264. https://doi.org/10.1007/s10914-010-9144-8.CrossRefGoogle ScholarPubMed
Supplementary material: File

Araújo et al. supplementary material

Araújo et al. supplementary material 1

Download Araújo et al. supplementary material(File)
File 30.9 KB
Supplementary material: PDF

Araújo et al. supplementary material

Araújo et al. supplementary material 2

Download Araújo et al. supplementary material(PDF)
PDF 1.6 MB
Supplementary material: File

Araújo et al. supplementary material

Araújo et al. supplementary material3

Download Araújo et al. supplementary material(File)
File 29.8 KB